高斯朴素贝叶斯分类器是什么?
时间: 2023-10-10 19:10:36 浏览: 182
朴素贝叶斯分类器 基于Hadoop平台的实现+源代码+文档说明
高斯朴素贝叶斯分类器是一种基于贝叶斯定理的分类方法,它假设每个特征维度的概率分布是高斯分布。在分类过程中,该算法会根据给定的特征值,计算每个类别的后验概率,并选取具有最大后验概率的类别作为分类结果。
具体来说,在训练阶段,该算法会计算每个类别下每个特征维度的均值和方差,然后将这些统计数据存储起来。在分类阶段,给定一个新的样本,该算法会根据存储的统计数据,计算该样本在每个类别下的概率,并选取具有最大概率的类别作为分类结果。
高斯朴素贝叶斯分类器是一种简单而且有效的分类方法,尤其适用于高维数据。但是它假设各个特征之间是独立的,这在某些情况下可能会导致预测误差。
阅读全文