torch.nn.maxpool2d
时间: 2023-04-24 13:05:12 浏览: 189
torch.nn.maxpool2d 是 PyTorch 中用于实现二维最大池化的类。它可以通过指定窗口大小和步长来进行池化操作。最大池化是一种常用的降维操作,可以帮助网络更好地捕捉图像中的重要特征。
相关问题
torch.nn.MaxPool2d
torch.nn.MaxPool2d is a module in PyTorch that performs 2D max pooling operation. It is used to downsample the input tensor along the spatial dimensions, i.e., width and height. The operation replaces each spatial area of the input tensor with the maximum value of that area.
The module takes the following inputs:
- kernel_size: The size of the window used for pooling.
- stride: The stride of the window used for pooling.
- padding: The amount of padding applied to the input tensor before the pooling operation.
- dilation: The spacing between the values within the kernel.
- ceil_mode: When set to True, the output size is rounded up instead of rounded down.
- return_indices: When set to True, the indices of the maximum values are returned along with the output tensor.
The output of the module is a tensor with dimensions (batch_size, channels, output_height, output_width), where output_height and output_width are calculated based on the input tensor dimensions, kernel_size, stride, padding, and dilation.
torch.nn.maxpool2d 和torch.nn.maxpool1d有什么区别
`torch.nn.maxpool2d` 和 `torch.nn.maxpool1d` 是 PyTorch 中用于实现最大池化操作的两个函数,它们的区别在于输入数据的维度不同。
`torch.nn.maxpool2d` 是用于二维输入数据(例如图像)的最大池化操作,它会将输入数据沿着宽度和高度方向进行池化,输出一个降低了尺寸的二维特征图。
`torch.nn.maxpool1d` 是用于一维输入数据(例如时间序列)的最大池化操作,它会将输入数据沿着一个维度(通常是时间维度)进行池化,输出一个降低了尺寸的一维特征图。
因此,这两个函数虽然都是用于最大池化操作,但是针对的输入数据不同,所以需要分别使用。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)