torch.nn.AvgPool2d
时间: 2023-07-18 11:44:29 浏览: 151
在PyTorch中,`torch.nn.AvgPool2d`是用于实现2D平均池化操作的类。其用法和`torch.nn.MaxPool2d`类似,只需要将`MaxPool2d`改为`AvgPool2d`即可。例如:
```python
import torch.nn as nn
# 定义一个2层的CNN网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
return x
```
其中,`nn.AvgPool2d`的参数和`nn.MaxPool2d`的参数一样,可以参考前面的回答。和`MaxPool2d`不同的是,`AvgPool2d`是取池化窗口内像素的平均值作为输出,而不是取最大值。
相关问题
请将如下的代码用图片的形式表现出来 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3, padding=1) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv4 = torch.nn.Conv2d(128, 128, kernel_size=3, padding=1) self.conv5 = torch.nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv6 = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1) self.maxpooling = torch.nn.MaxPool2d(2) self.avgpool = torch.nn.AvgPool2d(2) self.globalavgpool = torch.nn.AvgPool2d((8, 10)) self.bn1 = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(128) self.bn3 = torch.nn.BatchNorm2d(256) self.dropout50 = torch.nn.Dropout(0.5) self.dropout10 = torch.nn.Dropout(0.1) self.fc1 = torch.nn.Linear(256, 40) def forward(self, x): batch_size = x.size(0) x = self.bn1(F.relu(self.conv1(x))) x = self.bn1(F.relu(self.conv2(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn2(F.relu(self.conv3(x))) x = self.bn2(F.relu(self.conv4(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn3(F.relu(self.conv5(x))) x = self.bn3(F.relu(self.conv6(x))) x = self.globalavgpool(x) x = self.dropout50(x) x = x.view(batch_size, -1) x = self.fc1(x) return x
很抱歉,我不能直接插入图片,但是我可以为您提供代码的格式化版本:
```
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv4 = torch.nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.conv5 = torch.nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv6 = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.maxpooling = torch.nn.MaxPool2d(2)
self.avgpool = torch.nn.AvgPool2d(2)
self.globalavgpool = torch.nn.AvgPool2d((8, 10))
self.bn1 = torch.nn.BatchNorm2d(64)
self.bn2 = torch.nn.BatchNorm2d(128)
self.bn3 = torch.nn.BatchNorm2d(256)
self.dropout50 = torch.nn.Dropout(0.5)
self.dropout10 = torch.nn.Dropout(0.1)
self.fc1 = torch.nn.Linear(256, 40)
def forward(self, x):
batch_size = x.size(0)
x = self.bn1(F.relu(self.conv1(x)))
x = self.bn1(F.relu(self.conv2(x)))
x = self.maxpooling(x)
x = self.dropout10(x)
x = self.bn2(F.relu(self.conv3(x)))
x = self.bn2(F.relu(self.conv4(x)))
x = self.maxpooling(x)
x = self.dropout10(x)
x = self.bn3(F.relu(self.conv5(x)))
x = self.bn3(F.relu(self.conv6(x)))
x = self.globalavgpool(x)
x = self.dropout50(x)
x = x.view(batch_size, -1)
x = self.fc1(x)
return x
```
请说明这段代码的逻辑,先后执行顺序。class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3, padding=1) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv4 = torch.nn.Conv2d(128, 128, kernel_size=3, padding=1) self.conv5 = torch.nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv6 = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1) self.maxpooling = torch.nn.MaxPool2d(2) self.avgpool = torch.nn.AvgPool2d(2) self.globalavgpool = torch.nn.AvgPool2d((8, 10)) self.bn1 = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(128) self.bn3 = torch.nn.BatchNorm2d(256) self.dropout50 = torch.nn.Dropout(0.5) self.dropout10 = torch.nn.Dropout(0.1) self.fc1 = torch.nn.Linear(256, 40) def forward(self, x): batch_size = x.size(0) x = self.bn1(F.relu(self.conv1(x))) x = self.bn1(F.relu(self.conv2(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn2(F.relu(self.conv3(x))) x = self.bn2(F.relu(self.conv4(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn3(F.relu(self.conv5(x))) x = self.bn3(F.relu(self.conv6(x))) x = self.globalavgpool(x) x = self.dropout50(x) x = x.view(batch_size, -1) x = self.fc1(x) return x
这段代码定义了一个名为 Net 的类,继承了 torch.nn.Module。在初始化函数 __init__() 中,定义了多个卷积层(Conv2d)、池化层(MaxPool2d、AvgPool2d)、批标准化层(BatchNorm2d)、Dropout 层和全连接层(Linear)。在前向传播函数 forward() 中,首先获取输入张量 x 的 batch size,然后通过卷积层、池化层、批标准化层、Dropout 层和激活函数(ReLU)等操作进行特征提取和处理。最后将处理后的张量 x 经过全局平均池化层,再通过 Dropout 层进行正则化,最后将张量 x 进行展平(view)操作,并通过全连接层得到输出。整个模型的输入是一个尺寸为 (batch_size, 3, h, w) 的张量,输出是一个尺寸为 (batch_size, 40) 的张量。执行顺序为:首先执行初始化函数 __init__(),构建网络结构;接着执行前向传播函数 forward(),进行特征提取和处理,并返回输出结果。
阅读全文