数据集10行8列csv文件,第一列是序号,2到7列是特征,最后一列是标签,分别选择欧氏距离和曼哈顿距离,对前8个数据,分别进行K=3和K=5的KNN 分类,输出每一个分类结果的序号,再进行当K=3时,第9,10 预测结果是? 当K=5时,第9,10 预测结果是?python代码实现

时间: 2024-03-12 19:48:08 浏览: 58
好的,根据你的要求,我来给你实现一个既可以选择欧氏距离又可以选择曼哈顿距离的KNN分类的代码,代码如下: ```python import math # 计算两个样本之间的欧氏距离 def euclidean_distance(instance1, instance2): distance = 0 for i in range(1, 7): distance += pow((float(instance1[i]) - float(instance2[i])), 2) return math.sqrt(distance) # 计算两个样本之间的曼哈顿距离 def manhattan_distance(instance1, instance2): distance = 0 for i in range(1, 7): distance += abs(float(instance1[i]) - float(instance2[i])) return distance # 找到距离样本最近的k个邻居 def get_neighbors(training_set, test_instance, k, distance_func): distances = [] for i in range(len(training_set)): dist = distance_func(test_instance, training_set[i]) distances.append((training_set[i], dist)) distances.sort(key=lambda x: x[1]) neighbors = [] for i in range(k): neighbors.append(distances[i][0]) return neighbors # 对k个邻居进行投票,返回预测结果 def get_response(neighbors): class_votes = {} for i in range(len(neighbors)): response = neighbors[i][-1] if response in class_votes: class_votes[response] += 1 else: class_votes[response] = 1 sorted_votes = sorted(class_votes.items(), key=lambda x: x[1], reverse=True) return sorted_votes[0][0] # 读取数据集 def load_dataset(filename): dataset = [] with open(filename, 'r') as f: for line in f: instance = line.strip().split(',') dataset.append(instance) return dataset # 对数据集进行KNN分类 def knn(training_set, test_set, k, distance_func): predictions = [] for i in range(len(test_set)): neighbors = get_neighbors(training_set, test_set[i], k, distance_func) result = get_response(neighbors) predictions.append(result) return predictions # 测试代码 filename = 'data.csv' dataset = load_dataset(filename) # 对前8个数据进行KNN分类 training_set = dataset[:8] test_set = dataset[:8] k = 3 predictions_euclidean_k3 = knn(training_set, test_set, k, euclidean_distance) predictions_manhattan_k3 = knn(training_set, test_set, k, manhattan_distance) print('K=3时,前8个数据的欧氏距离分类结果的序号为:', predictions_euclidean_k3) print('K=3时,前8个数据的曼哈顿距离分类结果的序号为:', predictions_manhattan_k3) k = 5 predictions_euclidean_k5 = knn(training_set, test_set, k, euclidean_distance) predictions_manhattan_k5 = knn(training_set, test_set, k, manhattan_distance) print('K=5时,前8个数据的欧氏距离分类结果的序号为:', predictions_euclidean_k5) print('K=5时,前8个数据的曼哈顿距离分类结果的序号为:', predictions_manhattan_k5) # 预测第9、10个数据的分类结果 test_set = dataset[8:] k = 3 predictions_euclidean_k3 = knn(training_set, test_set, k, euclidean_distance) predictions_manhattan_k3 = knn(training_set, test_set, k, manhattan_distance) print('K=3时,第9、10个数据的欧氏距离分类结果的序号为:', predictions_euclidean_k3) print('K=3时,第9、10个数据的曼哈顿距离分类结果的序号为:', predictions_manhattan_k3) k = 5 predictions_euclidean_k5 = knn(training_set, test_set, k, euclidean_distance) predictions_manhattan_k5 = knn(training_set, test_set, k, manhattan_distance) print('K=5时,第9、10个数据的欧氏距离分类结果的序号为:', predictions_euclidean_k5) print('K=5时,第9、10个数据的曼哈顿距离分类结果的序号为:', predictions_manhattan_k5) ``` 这里我们定义了两个距离函数,分别是欧氏距离和曼哈顿距离,然后在进行KNN分类时,通过`distance_func`参数来选择使用哪个距离函数。其他部分的代码和之前的代码类似,只是在输出分类结果时,分别输出了欧氏距离和曼哈顿距离的分类结果序号。
阅读全文

相关推荐

大家在看

recommend-type

cst屏蔽机箱完整算例-电磁兼容.pdf

cst的机箱屏蔽实例,详细版。 本算例介绍如何仿真emc问题,分析一个带缝隙的金属腔体,利用波导端口向金属腔内馈电,在金属腔内形成电磁场,最后通过缝隙辐射到外部。
recommend-type

omnet++(tictoc 教程中文版)指南

这是个简短的教程,通过一个建模和仿真的实例来引导你入门 OMNET++,同时向你介绍一些广泛使用的 OMNET++特性。 本教程基于一个简单的 Tictoc 仿真样例,该样例保存在 OMNET++安装目录下的 sample/tictoc 子目录,所以你现在就可以试着让这个样例运行,但如果你跟着下面的步骤一步一步来的话,将会收获更多。
recommend-type

Subtitle流的接收-dvb subtitle原理及实现

Subtitle流的接收 同其它各种数据的接收一样,也要开一个通道(slot),并设置相应的通道缓冲区(用来保存该通道过滤出的数据),实现subtitle流的接收。
recommend-type

腾讯开悟-重返秘境模型(仅到终点)

平均分800左右
recommend-type

普通模式电压的非对称偏置-fundamentals of physics 10th edition

图 7.1 典型的电源配置 上面提到的局部网络的概念要求 不上电的 clamp-15 收发器必须不能降低系统的性能 从总线流入不 上电收发器的反向电流要尽量低 TJA1050 优化成有 低的反向电流 因此被预定用于 clamp-15 节点 在不上电的时候 收发器要处理下面的问题 普通模式信号的非对称偏置 RXD 显性箝位 与 Vcc 逆向的电源 上面的问题将在接下来的章节中讨论 7.1 普通模式电压的非对称偏置 原理上 图 7.2 中的电路根据显性状态的总线电平 给普通模式电压提供对称的偏置 因此 在隐性 状态中 总线电压偏置到对称的 Vcc/2 在不上电的情况下 内部偏置电路是总线向收发器产生显著反向电流的原因 结果 隐性状态下的 DC 电压电平和普通模式电压都下降到低于 Vcc/2 的对称电压 由于 TJA1050 的设计在不上电的情况下 不会 向总线拉电流 因此 和 PCA82C250 相比 TJA1050 的反向电流减少了大约 10% 有很大反向电流的早期收发器的情况如图 7.3 所示 它显示了在报文开始的时候 CANH 和 CANL 的 单端总线电压 同时也显示了相应的普通模式电压

最新推荐

recommend-type

python pandas读取csv后,获取列标签的方法

默认情况下,`read_csv`函数会将CSV文件的第一行视为列标签(headers),并将其作为DataFrame的列名。如果CSV文件没有列标签,pandas会自动为每一列生成默认的数字标签。 有时,我们可能需要直接获取这些列标签。在...
recommend-type

使用python获取csv文本的某行或某列数据的实例

在Python编程中,处理CSV文件是一项常见的任务,特别是在数据分析和数据清洗方面。CSV(逗号分隔值)文件是一种简单且普遍使用的格式,用于存储表格数据。本篇将详细介绍如何使用Python内置的`csv`模块来获取CSV文件...
recommend-type

Python将一个CSV文件里的数据追加到另一个CSV文件的方法

在Python编程中,处理CSV文件是一项常见的任务,特别是在数据分析、数据清洗或数据迁移等领域。CSV(Comma Separated Values)格式是一种通用的数据交换格式,它允许我们以纯文本形式存储表格数据。Python提供了内置...
recommend-type

使用Python向DataFrame中指定位置添加一列或多列的方法

但如果我们需要在特定位置插入新列,如在第一列或中间位置,该怎么办呢? 这里介绍一个灵活的方法,即使用`DataFrame.reindex()`函数。`reindex()`不仅可以用于调整行索引,还可以用于调整列索引。例如,如果我们想...
recommend-type

C#导出数据到CSV文件的通用类实例

虽然示例代码没有提供具体的导出方法,但通常会有一个类似`ExportToCSV`的方法,它遍历`_dataSource`,将每一行数据转换为CSV格式的字符串,并写入到文件中。 转换过程中,对于每个数据项,需要考虑以下几点: - ...
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。