with open(osp.join(save_path, filename), 'wb') as f: f.write(data.read()) 什么意思
时间: 2024-05-23 17:11:04 浏览: 210
这段代码是 Python 中用于将从网络上下载的二进制数据写入本地文件的常见方式。其中:
- `save_path` 是本地保存文件的路径;
- `filename` 是要保存的文件名;
- `data` 是从网络上下载的二进制数据;
- `open(osp.join(save_path, filename), 'wb')` 是打开一个二进制文件,`wb` 表示以二进制写入的方式打开;
- `with` 是 Python 的上下文管理器,可以自动管理文件的打开和关闭;
- `f.write(data.read())` 是将从网络上下载的二进制数据写入本地文件。`data.read()` 是将 `data` 中的二进制数据读取出来,然后 `f.write()` 将其写入到已经打开的文件中。
综合起来,这段代码的作用是将从网络上下载的二进制数据保存到本地的一个二进制文件中。
相关问题
def get_Image_dim_len(png_dir: str,jpg_dir:str): png = Image.open(png_dir) png_w,png_h=png.width,png.height #若第十行报错,说明jpg图片没有对应的png图片 png_dim_len = len(np.array(png).shape) assert png_dim_len==2,"提示:存在三维掩码图" jpg=Image.open(jpg_dir) jpg = ImageOps.exif_transpose(jpg) jpg.save(jpg_dir) jpg_w,jpg_h=jpg.width,jpg.height print(jpg_w,jpg_h,png_w,png_h) assert png_w==jpg_w and png_h==jpg_h,print("提示:%s mask图与原图宽高参数不一致"%(png_dir)) """2.读取单个图像均值和方差""" def pixel_operation(image_path: str): img = cv.imread(image_path, cv.IMREAD_COLOR) means, dev = cv.meanStdDev(img) return means,dev """3.分割数据集,生成label文件""" # 原始数据集 ann上一级 data_root = './work/voc_data02' #图像地址 image_dir="./JPEGImages" # ann图像文件夹 ann_dir = "./SegmentationClass" # txt文件保存路径 split_dir = './ImageSets/Segmentation' mmengine.mkdir_or_exist(osp.join(data_root, split_dir)) png_filename_list = [osp.splitext(filename)[0] for filename in mmengine.scandir( osp.join(data_root, ann_dir), suffix='.png')] jpg_filename_list=[osp.splitext(filename)[0] for filename in mmengine.scandir( osp.join(data_root, image_dir), suffix='.jpg')] assert len(jpg_filename_list)==len(png_filename_list),"提示:原图与掩码图数量不统一" print("数量检查无误") for i in range(10): random.shuffle(jpg_filename_list) red_num=0 black_num=0 with open(osp.join(data_root, split_dir, 'trainval.txt'), 'w+') as f: length = int(len(jpg_filename_list)) for line in jpg_filename_list[:length]: pngpath=osp.join(data_root,ann_dir,line+'.bmp') jpgpath=osp.join(data_root,image_dir,line+'.bmp') get_Image_dim_len(pngpath,jpgpath) img=cv.imread(pngpath,cv.IMREAD_GRAYSCALE) red_num+=len(img)*len(img[0])-len(img[img==0]) black_num+=len(img[img==0]) f.writelines(line + '\n') value=0 train_mean,train_dev=[[0.0,0.0,0.0]],[[0.0,0.0,0.0]] with open(osp.join(data_root, split_dir, 'train.txt'), 'w+') as f: train_length = int(len(jpg_filename_list) * 7/ 10) for line in jpg_filename_list[:train_length]: jpgpath=osp.join(data_root,image_dir,line+'.bmp') mean,dev=pixel_operation(jpgpath) train_mean+=mean train_dev+=dev f.writelines(line + '\n') with open(osp.join(data_root, split_dir, 'val.txt'), 'w+') as f: for line in jpg_filename_list[train_length:]: jpgpath=osp.join(data_root,image_dir,line+'.bmp') mean,dev=pixel_operation(jpgpath) train_mean+=mean train_dev+=dev f.writelines(line + '\n') 帮我把这段代码改成bmp图像可以制作数据集的代码
当然,我可以帮你将代码修改为支持bmp图像的数据集制作代码。请看下面的修改后的代码:
```python
from PIL import Image
import os
import random
import cv2 as cv
import numpy as np
def get_Image_dim_len(png_dir: str,jpg_dir:str):
png = Image.open(png_dir)
png_w,png_h=png.width,png.height
#若第十行报错,说明jpg图片没有对应的png图片
png_dim_len = len(np.array(png).shape)
assert png_dim_len==2,"提示:存在三维掩码图"
jpg=Image.open(jpg_dir)
jpg = jpg.transpose(Image.FLIP_LEFT_RIGHT) # 翻转图像
jpg.save(jpg_dir)
jpg_w,jpg_h=jpg.width,jpg.height
print(jpg_w,jpg_h,png_w,png_h)
assert png_w==jpg_w and png_h==jpg_h,print("提示:%s mask图与原图宽高参数不一致"%(png_dir))
def pixel_operation(image_path: str):
img = cv.imread(image_path, cv.IMREAD_COLOR)
means, dev = cv.meanStdDev(img)
return means,dev
data_root = './work/voc_data02'
image_dir="./JPEGImages"
ann_dir = "./SegmentationClass"
split_dir = './ImageSets/Segmentation'
os.makedirs(os.path.join(data_root, split_dir), exist_ok=True)
png_filename_list = [os.path.splitext(filename)[0] for filename in os.listdir(os.path.join(data_root, ann_dir)) if filename.endswith('.bmp')]
jpg_filename_list=[os.path.splitext(filename)[0] for filename in os.listdir(os.path.join(data_root, image_dir)) if filename.endswith('.bmp')]
assert len(jpg_filename_list)==len(png_filename_list),"提示:原图与掩码图数量不统一"
print("数量检查无误")
random.shuffle(jpg_filename_list)
red_num=0
black_num=0
with open(os.path.join(data_root, split_dir, 'trainval.txt'), 'w+') as f:
length = int(len(jpg_filename_list))
for line in jpg_filename_list[:length]:
pngpath=os.path.join(data_root,ann_dir,line+'.bmp')
jpgpath=os.path.join(data_root,image_dir,line+'.bmp')
get_Image_dim_len(pngpath,jpgpath)
img=cv.imread(pngpath,cv.IMREAD_GRAYSCALE)
red_num+=len(img)*len(img[0])-len(img[img==0])
black_num+=len(img[img==0])
f.writelines(line + '\n')
train_mean,train_dev=[[0.0,0.0,0.0]],[[0.0,0.0,0.0]]
with open(os.path.join(data_root, split_dir, 'train.txt'), 'w+') as f:
train_length = int(len(jpg_filename_list) * 7/ 10)
for line in jpg_filename_list[:train_length]:
jpgpath=os.path.join(data_root,image_dir,line+'.bmp')
mean,dev=pixel_operation(jpgpath)
train_mean+=mean
train_dev+=dev
f.writelines(line + '\n')
with open(os.path.join(data_root, split_dir, 'val.txt'), 'w+') as f:
for line in jpg_filename_list[train_length:]:
jpgpath=os.path.join(data_root,image_dir,line+'.bmp')
mean,dev=pixel_operation(jpgpath)
train_mean+=mean
train_dev+=dev
f.writelines(line + '\n')
```
希望这可以帮到你!如果你还有其他问题,请随时提问。
with open(osp.join(data_root, split_dir, 'trainval.txt'), 'w+') as f: length = int(len(gray_filename_list)) for line in gray_filename_list[:length]: labelpath=osp.join(data_root,ann_dir,line+'.bmp') graypath=osp.join(data_root,image_dir,line+'.bmp') get_Image_dim_len(labelpath,graypath) img=cv.imread(labelpath,cv.IMREAD_GRAYSCALE) red_num+=len(img)*len(img[0])-len(img[img==0]) black_num+=len(img[img==0]) f.writelines(line + '\n')解释一下这个戴拿
这段代码是一个文件操作的代码块,首先打开了一个文件,并将文件对象赋值给变量`f`。打开的文件是根据给定的路径拼接而成的,路径由`data_root`、`split_dir`和'trainval.txt'组成。
接下来,定义了一个变量`length`,它表示`gray_filename_list`列表的长度,即灰度图像文件名列表的长度。
然后,通过`for`循环遍历`gray_filename_list`列表的前`length`个元素。对于每个元素,首先根据文件名拼接出标签图像和灰度图像的路径,分别赋值给变量`labelpath`和`graypath`。
然后,调用函数`get_Image_dim_len(labelpath, graypath)`,对标签图像和灰度图像进行尺寸校验。
接下来,使用OpenCV的`cv.imread()`函数读取标签图像,并指定参数`cv.IMREAD_GRAYSCALE`表示以灰度图像方式读取。将读取后的图像赋值给变量`img`。
然后,通过计算黑色像素点(像素值为0)和非黑色像素点(像素值不为0)的数量,更新变量`black_num`和`red_num`。其中,`black_num`表示黑色像素点的数量,而`red_num`表示非黑色像素点的数量。
最后,使用文件对象`f`调用`writelines()`方法,将每个处理过的文件名写入文件中,每个文件名占据一行。
总结来说,这段代码的作用是对灰度图像文件名列表中的每个文件名进行处理,包括进行尺寸校验、读取图像、统计像素点数量,并将处理后的文件名写入到指定的文件中。
阅读全文