python中如何计算FLOPS
时间: 2024-01-12 10:04:28 浏览: 94
在Python中,可以使用`flops-counter`库来计算FLOPS。这个库可以用来估算神经网络的浮点运算次数(FLOPS)。以下是一个使用`flops-counter`库计算FLOPS的例子:
首先,需要安装`flops-counter`库:
```python
!pip install flops-counter
```
然后,可以使用以下代码计算FLOPS:
```python
import torch
from flops_counter import get_model_complexity_info
# 定义一个示例模型
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu = torch.nn.ReLU(inplace=True)
self.conv2 = torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv3 = torch.nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = self.relu(x)
x = self.pool(x)
return x
# 创建模型实例
model = Model()
# 计算FLOPS
macs, params = get_model_complexity_info(model, (3, 224, 224), as_strings=True, print_per_layer_stat=True)
print('FLOPS:', macs)
```
输出结果将会显示这个模型的FLOPS。
阅读全文