class MultiDataLoader(object): def __init__(self, dataloaders, n_batches): if n_batches <= 0: raise ValueError("n_batches should be > 0") self._dataloaders = dataloaders self._n_batches = np.maximum(1, n_batches) self._init_iterators()什么意思
时间: 2023-05-11 15:01:54 浏览: 155
这段代码定义了一个名为 MultiDataLoader 的类,它的构造函数接受两个参数:一个 dataloaders 列表和一个 n_batches 数字。如果 n_batches 小于等于 0,将会抛出 ValueError 异常。该类还有一个名为 _init_iterators 的私有方法。
相关问题
MLP tensor时间序列预测代码
MLP(多层感知器)是一种常用的神经网络模型,可以用于时间序列预测。下面是一个使用TensorFlow库实现MLP进行时间序列预测的代码示例:
```python
import tensorflow as tf
import numpy as np
# 定义MLP模型
class MLP(tf.keras.Model):
def __init__(self, input_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self.hidden_layer = tf.keras.layers.Dense(hidden_dim, activation='relu')
self.output_layer = tf.keras.layers.Dense(output_dim)
def call(self, inputs):
x = self.hidden_layer(inputs)
x = self.output_layer(x)
return x
# 准备数据
# 假设有100个时间步的输入序列和对应的目标值
input_sequence = np.random.rand(100, 10)
target_sequence = np.random.rand(100, 1)
# 划分训练集和测试集
train_size = int(len(input_sequence) * 0.8)
train_input = input_sequence[:train_size]
train_target = target_sequence[:train_size]
test_input = input_sequence[train_size:]
test_target = target_sequence[train_size:]
# 创建MLP模型实例
model = MLP(input_dim=10, hidden_dim=64, output_dim=1)
# 定义损失函数和优化器
loss_object = tf.keras.losses.MeanSquaredError()
optimizer = tf.keras.optimizers.Adam()
# 定义训练步骤
@tf.function
def train_step(inputs, targets):
with tf.GradientTape() as tape:
predictions = model(inputs)
loss = loss_object(targets, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss
# 进行训练
num_epochs = 10
batch_size = 32
num_batches = len(train_input) // batch_size
for epoch in range(num_epochs):
epoch_loss = 0.0
for batch in range(num_batches):
start = batch * batch_size
end = start + batch_size
inputs = train_input[start:end]
targets = train_target[start:end]
loss = train_step(inputs, targets)
epoch_loss += loss
print('Epoch {}, Loss: {}'.format(epoch+1, epoch_loss/num_batches))
# 进行测试
predictions = model(test_input)
test_loss = loss_object(test_target, predictions)
print('Test Loss: {}'.format(test_loss))
```
这段代码实现了一个具有一个隐藏层的MLP模型,用于时间序列预测。首先定义了MLP模型的结构,然后准备数据,划分训练集和测试集。接下来定义了损失函数和优化器,并定义了训练步骤。在训练过程中,使用批量梯度下降法进行参数更新。最后进行测试并计算测试集上的损失。
有没有transformer的例子
是的,以下是一个使用Transformer模型进行文本分类的示例:
```python
import tensorflow as tf
import tensorflow_datasets as tfds
# 加载IMDB数据集
(train_data, test_data), info = tfds.load('imdb_reviews/subwords8k',
split=(tfds.Split.TRAIN, tfds.Split.TEST),
with_info=True, as_supervised=True)
encoder = info.features['text'].encoder
BUFFER_SIZE = 10000
BATCH_SIZE = 64
# 训练数据和测试数据预处理
padded_shapes = ([None], ())
train_batches = (train_data.shuffle(BUFFER_SIZE).padded_batch(BATCH_SIZE, padded_shapes=padded_shapes))
test_batches = (test_data.padded_batch(BATCH_SIZE, padded_shapes=padded_shapes))
# Transformer模型定义
class TransformerModel(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, dropout_rate=0.1):
super(TransformerModel, self).__init__()
self.encoder = tf.keras.layers.Embedding(input_vocab_size, d_model)
self.pos_encoding = positional_encoding(input_vocab_size, d_model)
self.transformer_blocks = [TransformerBlock(d_model, num_heads, dff, dropout_rate) for _ in range(num_layers)]
self.dropout = tf.keras.layers.Dropout(dropout_rate)
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
def call(self, inputs, training):
input_seq, input_mask = inputs
input_emb = self.encoder(input_seq)
input_emb *= tf.math.sqrt(tf.cast(self.encoder.embedding_dim, tf.float32))
input_emb += self.pos_encoding[:input_emb.shape[1], :]
x = self.dropout(input_emb, training=training)
for i in range(len(self.transformer_blocks)):
x = self.transformer_blocks[i](x, input_mask, training)
x = tf.reduce_mean(x, axis=1)
x = self.final_layer(x)
return x
# Transformer块定义
class TransformerBlock(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, dropout_rate=0.1):
super(TransformerBlock, self).__init__()
self.multi_head_attention = MultiHeadAttention(d_model, num_heads)
self.feed_forward_network = point_wise_feed_forward_network(d_model, dff)
self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(dropout_rate)
self.dropout2 = tf.keras.layers.Dropout(dropout_rate)
def call(self, x, mask, training):
attn_output, _ = self.multi_head_attention(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layer_norm1(x + attn_output)
ffn_output = self.feed_forward_network(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layer_norm2(out1 + ffn_output)
return out2
# 多头注意力机制定义
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model)
self.wk = tf.keras.layers.Dense(d_model)
self.wv = tf.keras.layers.Dense(d_model)
self.dense = tf.keras.layers.Dense(d_model)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, q, k, v, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model))
output = self.dense(concat_attention)
return output, attention_weights
# 点式前馈网络定义
def point_wise_feed_forward_network(d_model, dff):
return tf.keras.Sequential([
tf.keras.layers.Dense(dff, activation='relu'),
tf.keras.layers.Dense(d_model)
])
# 编码器位置编码定义
def get_angles(pos, i, d_model):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(d_model))
return pos * angle_rates
def positional_encoding(position, d_model):
angle_rads = get_angles(np.arange(position)[:, np.newaxis], np.arange(d_model)[np.newaxis, :], d_model)
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
# 损失函数定义
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def loss_function(real, pred):
mask = tf.math.logical_not(tf.math.equal(real, 0))
loss_ = loss_object(real, pred)
mask = tf.cast(mask, dtype=loss_.dtype)
loss_ *= mask
return tf.reduce_mean(loss_)
# 评估指标定义
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
# 模型训练
EPOCHS = 10
num_layers = 4
d_model = 128
num_heads = 8
dff = 512
dropout_rate = 0.1
input_vocab_size = encoder.vocab_size
target_vocab_size = 2
transformer = TransformerModel(num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size, dropout_rate)
optimizer = tf.keras.optimizers.Adam()
for epoch in range(EPOCHS):
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for (batch, (input_seq, target)) in enumerate(train_batches):
input_mask = tf.math.logical_not(tf.math.equal(input_seq, 0))
target = tf.expand_dims(target, axis=-1)
with tf.GradientTape() as tape:
predictions = transformer((input_seq, input_mask), True)
loss = loss_function(target, predictions)
gradients = tape.gradient(loss, transformer.trainable_variables)
optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
train_loss(loss)
train_accuracy(target, predictions)
if batch % 100 == 0:
print('Epoch {} Batch {} Train Loss {:.4f} Train Accuracy {:.4f}'.format(
epoch + 1, batch, train_loss.result(), train_accuracy.result()))
for (batch, (input_seq, target)) in enumerate(test_batches):
input_mask = tf.math.logical_not(tf.math.equal(input_seq, 0))
target = tf.expand_dims(target, axis=-1)
predictions = transformer((input_seq, input_mask), False)
loss = loss_function(target, predictions)
test_loss(loss)
test_accuracy(target, predictions)
print('Epoch {} Test Loss {:.4f} Test Accuracy {:.4f}'.format(
epoch + 1, test_loss.result(), test_accuracy.result()))
```
这个示例使用Transformer模型来对IMDB电影评论进行情感分析。它使用TensorFlow Datasets中的IMDB数据集,将每个评论进行编码并将其输入到Transformer模型中,以预测评论的情感(正面或负面)。
阅读全文