栅格法路径规划障碍物碰撞代码
时间: 2023-07-02 18:22:19 浏览: 258
roommap.rar_栅格法_栅格法建模_路径规划遍历_遍历_障碍物
5星 · 资源好评率100%
以下是一个简单的栅格法路径规划障碍物碰撞的 Python 代码示例:
```python
import numpy as np
# 定义地图大小和障碍物位置
map_size = (10, 10)
obstacles = [(2, 2), (2, 3), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (6, 3), (6, 2)]
# 定义起点和终点
start = (0, 0)
goal = (9, 9)
# 定义栅格地图
grid_map = np.zeros(map_size)
for obstacle in obstacles:
grid_map[obstacle] = 1
# 定义 A* 算法
def astar(start, goal, grid_map):
open_list = [start]
closed_list = []
g_score = {start: 0}
f_score = {start: get_heuristic(start, goal)}
while open_list:
current = min(open_list, key=lambda x: f_score[x])
if current == goal:
return reconstruct_path(start, goal, came_from)
open_list.remove(current)
closed_list.append(current)
for neighbor in get_neighbors(current, grid_map):
if neighbor in closed_list:
continue
tentative_g_score = g_score[current] + get_distance(current, neighbor)
if neighbor not in open_list:
open_list.append(neighbor)
elif tentative_g_score >= g_score[neighbor]:
continue
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + get_heuristic(neighbor, goal)
return None
# 定义获取邻居栅格的函数
def get_neighbors(current, grid_map):
neighbors = []
for i in range(-1, 2):
for j in range(-1, 2):
if i == 0 and j == 0:
continue
neighbor = (current[0]+i, current[1]+j)
if neighbor[0] < 0 or neighbor[0] >= grid_map.shape[0] or neighbor[1] < 0 or neighbor[1] >= grid_map.shape[1]:
continue
if grid_map[neighbor] == 1:
continue
neighbors.append(neighbor)
return neighbors
# 定义获取两点之间的距离函数
def get_distance(start, end):
return np.sqrt((start[0]-end[0])**2 + (start[1]-end[1])**2)
# 定义获取启发式函数的函数
def get_heuristic(start, goal):
return get_distance(start, goal)
# 定义重构路径的函数
def reconstruct_path(start, goal, came_from):
path = [goal]
while path[-1] != start:
path.append(came_from[path[-1]])
path.reverse()
return path
# 运行 A* 算法
came_from = {}
path = astar(start, goal, grid_map)
# 输出路径和地图
print('Path:', path)
print('Map:')
print(grid_map)
```
在这个代码中,我们首先定义了地图大小和障碍物位置,然后定义了起点和终点。接下来,我们定义了栅格地图,并将障碍物的占据网格视为不可通过的状态。然后,我们定义了 A* 算法,并使用启发式函数和邻居栅格函数来搜索最优路径。最后,我们运行 A* 算法并输出路径和地图。
阅读全文