out_img = chw_to_hwc(output.detach().cpu().squeeze(0).numpy())
时间: 2024-05-26 11:17:14 浏览: 154
这段代码中,output 是一个 PyTorch tensor,detach() 方法是将其从计算图中分离出来,cpu() 方法是将其转移到 CPU 上,squeeze(0) 方法是去除 size 为 1 的维度,最后 numpy() 方法将其转换为 NumPy 数组。
而 chw_to_hwc 函数的作用是将输入的数组从 channel-first 的形式转换为 channel-last 的形式,其中 chw 表示 channel-first 的顺序,而 hwc 表示 channel-last 的顺序。在本例中,输入的数组是 output,它是一个包含输出图像像素值的多维数组。因此,这段代码的作用是将输出图像从 channel-first 的形式转换为 channel-last 的形式,并将其保存在 out_img 变量中。
相关问题
def unzip_infer_data(src_path,target_path): ''' 解压预测数据集 ''' if(not os.path.isdir(target_path)): z = zipfile.ZipFile(src_path, 'r') z.extractall(path=target_path) z.close() def load_image(img_path): ''' 预测图片预处理 ''' img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img = img/255 # 像素值归一化 return img infer_src_path = './archive_test.zip' infer_dst_path = './archive_test' unzip_infer_data(infer_src_path,infer_dst_path) para_state_dict = paddle.load("MyDNN") model = MyDNN() model.set_state_dict(para_state_dict) #加载模型参数 model.eval() #验证模式 #展示预测图片 infer_path='./archive_test/alexandrite_18.jpg' img = Image.open(infer_path) plt.imshow(img) #根据数组绘制图像 plt.show() #显示图像 #对预测图片进行预处理 infer_imgs = [] infer_imgs.append(load_image(infer_path)) infer_imgs = np.array(infer_imgs) label_dic = train_parameters['label_dict'] for i in range(len(infer_imgs)): data = infer_imgs[i] dy_x_data = np.array(data).astype('float32') dy_x_data=dy_x_data[np.newaxis,:, : ,:] img = paddle.to_tensor (dy_x_data) out = model(img) lab = np.argmax(out.numpy()) #argmax():返回最大数的索引 print("第{}个样本,被预测为:{},真实标签为:{}".format(i+1,label_dic[str(lab)],infer_path.split('/')[-1].split("_")[0])) print("结束")根据这一段代码续写一段利用这个模型进行宝石预测的GUI界面
好的,根据这段代码,我可以为您提供一个基于tkinter库的简单GUI界面,您可以在其中选择待预测的图片,并得到预测结果。以下是续写的代码:
```python
import tkinter as tk
from tkinter import filedialog
from PIL import ImageTk, Image
# 创建窗口
window = tk.Tk()
window.title("宝石预测")
window.geometry("400x400")
# 加载模型参数
para_state_dict = paddle.load("MyDNN")
model = MyDNN()
model.set_state_dict(para_state_dict)
model.eval()
# 加载标签字典
label_dict = train_parameters['label_dict']
# 创建预测函数
def predict():
# 获取待预测图片路径
img_path = filedialog.askopenfilename()
img = Image.open(img_path)
# 预处理图片
img = img.resize((224, 224), Image.BILINEAR)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img / 255
img = np.array([img])
# 进行预测
img = paddle.to_tensor(img)
out = model(img)
label = np.argmax(out.numpy())
result = label_dict[str(label)]
# 显示预测结果
result_label.config(text="预测结果:{}".format(result))
# 显示待预测图片
img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200)))
img_label.config(image=img)
img_label.image = img
# 创建选择图片按钮
select_button = tk.Button(window, text="选择图片", command=predict)
select_button.pack(pady=20)
# 创建待预测图片区域
img_label = tk.Label(window)
img_label.pack()
# 创建预测结果区域
result_label = tk.Label(window, font=("Helvetica", 16))
result_label.pack(pady=20)
# 进入消息循环
window.mainloop()
```
您可以将这段代码保存为.py文件并运行,即可启动GUI界面。界面中有一个“选择图片”按钮,您可以点击该按钮选择待预测的图片,程序将会自动对该图片进行预测,并在界面上显示预测结果和待预测图片。
import tkinter as tk from tkinter import filedialog from PIL import ImageTk, Image # 创建窗口 window = tk.Tk() window.title("宝石预测") window.geometry("400x400") # 加载模型参数 para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) model.eval() # 加载标签字典 label_dict = train_parameters['label_dict'] # 创建预测函数 def predict(): # 获取待预测图片路径 img_path = filedialog.askopenfilename() img = Image.open(img_path) # 将处理后的图像数据转换为Image对象,并按照要求大小进行resize操作 img = Image.fromarray(np.uint8(img)).convert('RGB') img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) # HWC to CHW img /= 255 # 像素值归一化 img = np.array([img]) # 进行预测 img = paddle.to_tensor(img) out = model(img) label = np.argmax(out.numpy()) result = label_dict[str(label)] # 显示预测结果 result_label.config(text="预测结果:{}".format(result)) # 显示待预测图片 img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200))) img_label.config(image=img) img_label.image = img # 创建选择图片按钮 select_button = tk.Button(window, text="选择图片", command=predict) select_button.pack(pady=20) # 创建待预测图片区域 img_label = tk.Label(window) img_label.pack() # 创建预测结果区域 result_label = tk.Label(window, font=("Helvetica", 16)) result_label.pack(pady=20) # 进入消息循环 window.mainloop() 给这段代码添加使用cv2的均值滤波对彩色图片进行降噪的功能
可以在预测函数predict()中添加使用cv2的均值滤波对彩色图片进行降噪的功能,具体代码如下:
```python
import cv2
# 创建预测函数
def predict():
# 获取待预测图片路径
img_path = filedialog.askopenfilename()
img = Image.open(img_path)
# 均值滤波对彩色图片进行降噪
img = cv2.blur(np.array(img), (5,5))
# 将处理后的图像数据转换为Image对象,并按照要求大小进行resize操作
img = Image.fromarray(np.uint8(img)).convert('RGB')
img = img.resize((224, 224), Image.BILINEAR)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1)) # HWC to CHW
img /= 255 # 像素值归一化
img = np.array([img])
# 进行预测
img = paddle.to_tensor(img)
out = model(img)
label = np.argmax(out.numpy())
result = label_dict[str(label)]
# 显示预测结果
result_label.config(text="预测结果:{}".format(result))
# 显示待预测图片
img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200)))
img_label.config(image=img)
img_label.image = img
```
在预测函数中,先使用cv2的blur函数对彩色图片进行均值滤波降噪,然后再将处理后的图像数据转换为Image对象,并按照要求大小进行resize操作,最后进行预测并显示结果。
阅读全文