机器学习pca+knn算法代码
时间: 2023-06-21 13:17:37 浏览: 159
PCA+KNN算法的代码可以使用Python中的scikit-learn库来实现。下面是示例代码:
```python
# 导入依赖库
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
# 加载示例数据集
iris = load_iris()
# 进行PCA降维
pca = PCA(n_components=2)
X = pca.fit_transform(iris.data)
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, iris.target, test_size=0.3)
# 训练KNN模型
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
# 预测测试集
y_pred = knn.predict(X_test)
# 输出准确率
accuracy = knn.score(X_test, y_test)
print('Accuracy: {:.2f}%'.format(accuracy * 100))
```
这段代码首先加载了Iris数据集,并使用PCA进行降维处理,将数据降到了2维。然后使用train_test_split函数将数据集分割为训练集和测试集。接下来,我们初始化一个KNN分类器,并使用训练集来训练模型。最后,我们使用测试集来评估模型的准确率,并将结果输出到控制台。
阅读全文