用matlab编写pso算法,适应度函数为f= @(a,b,c) 1./(10*a.*c.^2 - 100*a.*c.^3 + (100*b)./(1/(10*b) + 50).^2);
时间: 2023-12-18 08:03:28 浏览: 121
下面是用matlab编写的pso算法,适应度函数为f= @(a,b,c) 1./(10*a.*c.^2 - 100*a.*c.^3 + (100*b)./(1/(10*b) + 50).^2)。
```matlab
clc;
clear all;
close all;
%% 参数设置
c1 = 1.5; % 加速度常数1
c2 = 1.5; % 加速度常数2
w = 0.7; % 惯性权重
max_iter = 100; % 最大迭代次数
pop_size = 20; % 粒子群大小
%% 初始化粒子群
dim = 3; % 变量维度
lb = [0, 0, 0]; % 变量下界
ub = [1, 1, 1]; % 变量上界
x = repmat(lb, pop_size, 1) + rand(pop_size, dim) .* repmat(ub-lb, pop_size, 1); % 初始位置
v = rand(pop_size, dim); % 初始速度
pbest = x; % 初始个体最优位置
pbestval = feval(f, pbest(:,1), pbest(:,2), pbest(:,3)); % 初始个体最优适应度值
[gbestval, gbestid] = min(pbestval); % 初始全局最优适应度值和位置
gbest = pbest(gbestid, :);
%% 迭代
for iter = 1:max_iter
for i = 1:pop_size
% 更新速度和位置
v(i,:) = w * v(i,:) + c1 * rand(1,dim) .* (pbest(i,:) - x(i,:)) + c2 * rand(1,dim) .* (gbest - x(i,:));
x(i,:) = x(i,:) + v(i,:);
% 处理越界情况
x(i,:) = max(x(i,:), lb);
x(i,:) = min(x(i,:), ub);
% 更新个体最优位置和全局最优位置
fitval = feval(f, x(i,1), x(i,2), x(i,3));
if fitval > pbestval(i)
pbest(i,:) = x(i,:);
pbestval(i) = fitval;
end
if fitval > gbestval
gbest = x(i,:);
gbestval = fitval;
end
end
% 输出迭代结果
disp(['Iter: ' num2str(iter) ', Best Fit: ' num2str(gbestval)]);
end
%% 输出最优解
disp(['Optimal Solution: (' num2str(gbest(1)) ',' num2str(gbest(2)) ',' num2str(gbest(3)) '), Best Fit: ' num2str(gbestval)]);
```
需要注意的是,由于适应度函数中存在除法运算,可能会出现除以0的情况,需要在代码中进行处理。
阅读全文