编写粒子群算法matlab程序,适应度函数为function y=fun(x) y=1/(500^2*x(3)^2*x(1)*x(2)+10/(500^2*40^2*(50*500^2*40^2+1)^2)-(x(3)^2*x(1)*x(2)/500^2*50));
时间: 2023-12-03 08:46:22 浏览: 68
粒子群算法matlab源程序function.docx
以下是粒子群算法的MATLAB程序,适应度函数为fun:
```matlab
function [xopt, fopt] = PSO(fun, nvars, lb, ub, MaxIt, nPop, w, c1, c2)
% PSO: Particle Swarm Optimization
% [xopt, fopt] = PSO(fun, nvars, lb, ub, MaxIt, nPop, w, c1, c2);
% fun: function handle
% nvars: number of variables
% lb: lower bound of variables
% ub: upper bound of variables
% MaxIt: maximum number of iterations
% nPop: population size
% w: inertial weight
% c1: cognitive factor
% c2: social factor
% xopt: optimal solution
% fopt: optimal function value
% Initialize the population
pop = repmat(struct('x', [], 'v', [], 'p', [], 'fp', []), nPop, 1);
for i = 1:nPop
pop(i).x = lb + (ub - lb) .* rand(1, nvars);
pop(i).v = zeros(1, nvars);
pop(i).p = pop(i).x;
pop(i).fp = feval(fun, pop(i).x);
end
% Initialize the best particle and global best
[~, gbest] = min([pop.fp]);
gbest = pop(gbest);
for i = 1:nPop
if pop(i).fp < gbest.fp
gbest = pop(i);
end
end
% Main loop
for t = 1:MaxIt
% Update the velocity and position of each particle
for i = 1:nPop
pop(i).v = w * pop(i).v ...
+ c1 * rand(1, nvars) .* (pop(i).p - pop(i).x) ...
+ c2 * rand(1, nvars) .* (gbest.x - pop(i).x);
pop(i).x = pop(i).x + pop(i).v;
% Check the boundaries
pop(i).x = max(pop(i).x, lb);
pop(i).x = min(pop(i).x, ub);
% Evaluate the new particle
pop(i).fp = feval(fun, pop(i).x);
% Update the personal best
if pop(i).fp < pop(i).fp
pop(i).p = pop(i).x;
end
% Update the global best
if pop(i).fp < gbest.fp
gbest = pop(i);
end
end
end
% Output
xopt = gbest.x;
fopt = gbest.fp;
end
```
使用方法如下:
```matlab
% Define the fitness function
fun = @(x) 1/(500^2*x(3)^2*x(1)*x(2)+10/(500^2*40^2*(50*500^2*40^2+1)^2)-(x(3)^2*x(1)*x(2)/500^2*50));
% Set the PSO parameters
nvars = 3; % Number of variables
lb = [0.01 0.01 0.01]; % Lower bounds
ub = [1 1 1]; % Upper bounds
MaxIt = 1000; % Maximum number of iterations
nPop = 30; % Population size
w = 1; % Inertial weight
c1 = 2; % Cognitive factor
c2 = 2; % Social factor
% Run the PSO algorithm
[xopt, fopt] = PSO(fun, nvars, lb, ub, MaxIt, nPop, w, c1, c2);
% Display the results
disp('Optimal solution:');
disp(xopt);
disp('Optimal function value:');
disp(fopt);
```
其中,fun是适应度函数,nvars是变量个数,lb和ub是变量的上下界,MaxIt是最大迭代次数,nPop是种群大小,w、c1和c2是粒子群算法的参数。运行程序即可得到最优解和最优函数值。
阅读全文