二叉树的遍历推理 已知二叉树的先序遍历序列为 EIFCGABHDJ 中序遍历序列为 FIGCAEHDBJ 则后序遍历序列为
时间: 2024-05-20 10:17:07 浏览: 129
GFICAEHJDBHABCGEIF
推理过程:
根据先序遍历序列,可以发现根节点为E。
根据中序遍历序列,可以将二叉树分为左子树和右子树。
左子树的中序遍历序列为FIGCAEH,对应的先序遍历序列为IFCGAEH。
右子树的中序遍历序列为DBJ,对应的先序遍历序列为BHDJ。
对左子树和右子树分别进行递归,得到左子树的后序遍历序列GFICAEHJ和右子树的后序遍历序列BHJD.
将左子树的后序遍历序列和右子树的后序遍历序列拼接起来,并加上根节点E,得到最终的后序遍历序列GFICAEHJDBHABCGEIF。
相关问题
二叉树的遍历推理* 已知二叉树的中序遍历序列为 GADCJEBIHF 后序遍历序列为 ADGEJIBFHC 则先序遍历序列为
我们可以通过中序遍历序列和后序遍历序列来推导出先序遍历序列。先回顾一下三种遍历的定义:
- 先序遍历:先访问根节点,再访问左子树,最后访问右子树;
- 中序遍历:先访问左子树,再访问根节点,最后访问右子树;
- 后序遍历:先访问左子树,再访问右子树,最后访问根节点。
根据后序遍历序列,我们可以知道二叉树的根节点是 `C`。根据中序遍历序列,我们可以把二叉树划分为左子树和右子树。对于左子树,它的中序遍历序列为 `GADJEB`,后序遍历序列为 `ADGEJIBF`;对于右子树,它的中序遍历序列为 `IHFB`,后序遍历序列为 `BFHCIEJGAD`。
现在我们可以分别递归处理左子树和右子树了。对于左子树,它的先序遍历序列的第一个节点是根节点,即 `A`;对于右子树,它的先序遍历序列的第一个节点是根节点,即 `I`。因此,二叉树的先序遍历序列为 `CAGDJEIBFH`。
二叉树的遍历推理* 已知二叉树的中序遍历序列为 DIGAEJCBFH 后序遍历序列为 IDAGJFBHCE 则先序遍历序列为
ADEGJIBFCH。
我们可以根据已知的中序遍历序列和后序遍历序列推导出二叉树的结构,然后再根据二叉树的结构进行先序遍历。
首先,根据后序遍历序列,可以知道根节点为C。然后,在中序遍历序列中,可以找到C,并且可以确定它的左子树为DIGAEJ,右子树为BFH。接下来,我们可以根据后序遍历序列中C的左边和右边的部分(即IDAGJFBH和E),分别对左子树和右子树进行递归,得到它们的结构。最后,根据得到的二叉树结构,进行先序遍历,即可得到ADEGJIBFCH。
因此,答案为ADEGJIBFCH。
阅读全文