get_bert_encode函数代码
时间: 2024-05-01 14:21:18 浏览: 109
以下是一个使用Hugging Face Transformers库中的BERT模型进行编码的示例函数:
```python
import torch
from transformers import BertTokenizer, BertModel
def get_bert_encode(text, model_name='bert-base-uncased', pooling_method='mean'):
# Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
# Tokenize input text
tokenized_text = tokenizer.encode(text, add_special_tokens=True)
# Convert tokenized_text to a tensor
input_ids = torch.tensor([tokenized_text])
# Get BERT model output
with torch.no_grad():
output = model(input_ids)
# Extract the last hidden state of the BERT model
last_hidden_state = output[0]
# Apply pooling to get a fixed-length vector representation of the input text
if pooling_method == 'mean':
pooled_output = torch.mean(last_hidden_state, dim=1)
elif pooling_method == 'max':
pooled_output = torch.max(last_hidden_state, dim=1)[0]
else:
raise ValueError("Invalid pooling method. Must be either 'mean' or 'max'.")
# Convert the tensor to a numpy array
encoded_text = pooled_output.squeeze().numpy()
return encoded_text
```
这个函数使用了BertTokenizer类来将输入文本转换为BERT模型可以接受的格式,并使用BertModel类进行编码。该函数还支持使用“平均”或“最大”池化方法将BERT的最后一个隐藏状态转换为固定长度的向量表示形式。
阅读全文