ros写一个追踪算法,可以用简单的pid,也可以用纯追踪,在机器人gazebo环境下编程实现一个y= 1.0+ 0.5*sin(x)曲线路径的纯追踪,在控制窗口里实时输出机器人位置与预定轨迹的跟踪误差。
时间: 2024-05-15 08:19:33 浏览: 104
turtlebot沿墙_ROS_沿墙算法实现_gazebo_turtlebot_givecom
5星 · 资源好评率100%
以下是一个基于PID的追踪算法的ROS实现,它可以追踪y=1.0+0.5*sin(x)曲线路径。
首先,需要创建一个ROS节点并订阅机器人的位姿信息和控制指令。代码如下:
```python
#!/usr/bin/env python
import rospy
from geometry_msgs.msg import PoseStamped, Twist
# callback function to get the robot pose
def pose_callback(msg):
# TODO: implement the pose callback function
pass
# callback function to get the control command
def cmd_callback(msg):
# TODO: implement the cmd callback function
pass
if __name__ == '__main__':
rospy.init_node('path_tracker')
# subscribe to the robot pose and control command topics
rospy.Subscriber('/robot_pose', PoseStamped, pose_callback)
rospy.Subscriber('/control_cmd', Twist, cmd_callback)
# TODO: initialize the PID controller and other variables
rospy.spin()
```
然后,需要实现PID控制器并计算控制指令。代码如下:
```python
import math
class PIDController:
def __init__(self, Kp, Ki, Kd):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.integral = 0.0
self.derivative = 0.0
self.prev_error = 0.0
def compute(self, error):
self.integral += error
self.derivative = error - self.prev_error
self.prev_error = error
return self.Kp * error + self.Ki * self.integral + self.Kd * self.derivative
# path tracking function
def track_path(x, y, vx, vy):
# calculate the desired position and velocity
x_des = x
y_des = 1.0 + 0.5 * math.sin(x)
vx_des = vx
vy_des = 0.5 * math.cos(x) * vx
# calculate the tracking error
error_x = x_des - x
error_y = y_des - y
# calculate the control command using PID
cmd_vx = pid_x.compute(error_x)
cmd_vy = pid_y.compute(error_y)
# publish the control command
cmd_msg = Twist()
cmd_msg.linear.x = cmd_vx
cmd_msg.linear.y = cmd_vy
cmd_msg.angular.z = 0.0
cmd_pub.publish(cmd_msg)
# publish the tracking error
error_msg = PoseStamped()
error_msg.pose.position.x = error_x
error_msg.pose.position.y = error_y
error_msg.pose.orientation.w = 1.0
error_pub.publish(error_msg)
```
最后,需要在回调函数中调用path_tracking函数并发布控制指令和跟踪误差。代码如下:
```python
pid_x = PIDController(Kp=0.5, Ki=0.0, Kd=0.1)
pid_y = PIDController(Kp=0.5, Ki=0.0, Kd=0.1)
cmd_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10)
error_pub = rospy.Publisher('/error', PoseStamped, queue_size=10)
def pose_callback(msg):
x = msg.pose.position.x
y = msg.pose.position.y
vx = msg.twist.linear.x
vy = msg.twist.linear.y
track_path(x, y, vx, vy)
def cmd_callback(msg):
# ignore the control command from external sources
pass
```
完整的代码如下:
```python
#!/usr/bin/env python
import math
import rospy
from geometry_msgs.msg import PoseStamped, Twist
class PIDController:
def __init__(self, Kp, Ki, Kd):
self.Kp = Kp
self.Ki = Ki
self.Kd = Kd
self.integral = 0.0
self.derivative = 0.0
self.prev_error = 0.0
def compute(self, error):
self.integral += error
self.derivative = error - self.prev_error
self.prev_error = error
return self.Kp * error + self.Ki * self.integral + self.Kd * self.derivative
# path tracking function
def track_path(x, y, vx, vy):
# calculate the desired position and velocity
x_des = x
y_des = 1.0 + 0.5 * math.sin(x)
vx_des = vx
vy_des = 0.5 * math.cos(x) * vx
# calculate the tracking error
error_x = x_des - x
error_y = y_des - y
# calculate the control command using PID
cmd_vx = pid_x.compute(error_x)
cmd_vy = pid_y.compute(error_y)
# publish the control command
cmd_msg = Twist()
cmd_msg.linear.x = cmd_vx
cmd_msg.linear.y = cmd_vy
cmd_msg.angular.z = 0.0
cmd_pub.publish(cmd_msg)
# publish the tracking error
error_msg = PoseStamped()
error_msg.pose.position.x = error_x
error_msg.pose.position.y = error_y
error_msg.pose.orientation.w = 1.0
error_pub.publish(error_msg)
# callback function to get the robot pose
def pose_callback(msg):
x = msg.pose.position.x
y = msg.pose.position.y
vx = msg.twist.linear.x
vy = msg.twist.linear.y
track_path(x, y, vx, vy)
# callback function to get the control command
def cmd_callback(msg):
# ignore the control command from external sources
pass
if __name__ == '__main__':
rospy.init_node('path_tracker')
# subscribe to the robot pose and control command topics
rospy.Subscriber('/robot_pose', PoseStamped, pose_callback)
rospy.Subscriber('/control_cmd', Twist, cmd_callback)
# initialize the PID controller and other variables
pid_x = PIDController(Kp=0.5, Ki=0.0, Kd=0.1)
pid_y = PIDController(Kp=0.5, Ki=0.0, Kd=0.1)
cmd_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10)
error_pub = rospy.Publisher('/error', PoseStamped, queue_size=10)
rospy.spin()
```
这个算法在机器人运动过程中会实时输出机器人位置与预定轨迹的跟踪误差,并调整控制指令以使机器人尽可能接近预定轨迹。
阅读全文