cluster_labels = pd.DataFrame(cluster_labels_k, columns=['clusters']) df1 = pd.concat((df, cluster_labels), axis=1) clusters_percent = df1.groupby('clusters')['排名'].count().reset_index() clusters_percent['percent'] = clusters_percent.排名.map(lambda x:x/clusters_percent.排名.sum()) clusters_percent.columns = ['cluster','count','percent'] clusters_percent
时间: 2024-01-17 13:02:46 浏览: 80
这段代码是将聚类结果标签添加到原始数据中,并计算每个聚类中数据点所占的比例。
首先,将聚类结果标签cluster_labels_k转换为一个DataFrame对象cluster_labels,并将列名设置为'clusters'。然后,使用concat函数将原始数据df和聚类标签cluster_labels按列合并成一个新的DataFrame对象df1。
接下来,使用groupby函数对新的DataFrame对象df1按照聚类标签'clusters'进行分组,并计算每个聚类中数据点的数量。然后,使用map函数将每个聚类中数据点数量转换为所占的比例,并将计算结果保存在新列'percent'中。最后,将'排名'改为'count','clusters'改为'cluster',并将新的DataFrame对象命名为clusters_percent。
该代码的目的是为了进一步分析聚类结果,计算每个聚类中数据点所占的比例,以便更好地理解聚类结果。
相关问题
ValueError Traceback (most recent call last) Cell In[39], line 3 1 from sklearn.cluster import KMeans 2 model_kmean = KMeans(n_clusters=3) ----> 3 cluster_labels_1= model_kmean.fit_predict(df1) 4 cluster_labels1=pd.DataFrame(cluster_labels_1, columns=['clusters']) 5 merge_data1=pd.concat([a, pd.Series(cluster_labels_1, index=df1.index)], axis=1) File ~\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1033, in _BaseKMeans.fit_predict(self, X, y, sample_weight) 1010 def fit_predict(self, X, y=None, sample_weight=None): 1011 """Compute cluster centers and predict cluster index for each sample. 1012 1013 Convenience method; equivalent to calling fit(X) followed by (...) 1031 Index of the cluster each sample belongs to. 1032 """ -> 1033 return self.fit(X, sample_weight=sample_weight).labels_
这段代码出现了一个 ValueError,可能是由于数据类型不匹配或参数设置错误导致的。建议检查一下 df1 的数据类型和值是否符合 KMeans 模型的要求。另外,也可以尝试调整一下 n_clusters 参数的值看看是否能够解决问题。
from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=5,n_jobs=-1,random_state=1234) # 模型训练 kmeans_fit = kmeans.fit(data_scale) # 聚类中心 kmeans_cluster = kmeans_fit.cluster_centers_ print('聚类中心为\n',kmeans_fit.cluster_centers_) # 聚类后样本的类别标签 kmeans_label = kmeans_fit.labels_ print('聚类后样本标签为\n',kmeans_fit.labels_) # 聚类后各个类别数目 r1 = pd.Series(kmeans_label).value_counts() print('聚类后各个类别数目\n',r1) # 输出聚类分群结果 cluster_center = pd.DataFrame(kmeans_cluster,columns=['ZL','ZR','ZF','ZM','ZC']) cluster_center.index = pd.DataFrame(kmeans_label).drop_duplicates().iloc[:,0] cluster = pd.concat([r1,cluster_center],axis=1) # 修改第一列列名 list_column = list(cluster.columns) list_column[0] = '类别数目' cluster.columns = list_column 将上述代码转换为matlab语言
把Python代码转换为MATLAB代码可以参考以下示例:
```matlab
% 导入sklearn库中的KMeans类
addpath('sklearn.cluster')
from sklearn.cluster import KMeans
% 构造KMeans对象
kmeans = KMeans('n_clusters',5,'n_jobs',-1,'random_state',1234);
% 训练模型
kmeans_fit = kmeans.fit(data_scale);
% 获取聚类中心
kmeans_cluster = kmeans_fit.cluster_centers_;
disp('聚类中心为:');
disp(kmeans_fit.cluster_centers_);
% 获取样本的类别标签
kmeans_label = kmeans_fit.labels_;
disp('聚类后样本标签为:');
disp(kmeans_fit.labels_);
% 获取各个类别数目
r1 = tabulate(kmeans_label);
disp('聚类后各个类别数目:');
disp(r1);
% 输出聚类分群结果
cluster_center = array2table(kmeans_cluster,'VariableNames',{'ZL','ZR','ZF','ZM','ZC'});
cluster_center.Properties.RowNames = cellstr(num2str(unique(kmeans_label)));
cluster = [array2table(r1(:,2),'VariableNames',{'类别数目'}), cluster_center];
cluster.Properties.VariableNames{1} = '类别数目';
disp(cluster);
```
需要注意的是,MATLAB中没有直接对应Python中的pandas库,因此需要使用MATLAB自带的数据类型,如table和cell等。另外,Python中的value_counts()方法在MATLAB中可以使用tabulate()函数实现。
阅读全文