cls = class_create(THIS_MODULE,name); // 自动创建设备节点 if(cls == NULL){ printk("class_create failed!\n"); } dev = device_create(cls, NULL,MKDEV(major,0),NULL,"chrdev0"); // 在应用层 后期要去open的chrdev0节点名字 if(dev == NULL){ printk("device_create failed!\n"); } printk("class device_create success .\n"); // 打印输出 return 0;
时间: 2024-04-21 15:25:39 浏览: 94
这段代码是用于在 Linux 内核中创建一个字符设备节点,并且自动为该设备节点创建一个设备类。其中,第一行代码使用 THIS_MODULE 和设备节点名称 name 创建一个设备类 cls。第二行代码判断设备类是否创建成功,如果为 NULL 则打印错误信息。第三行代码使用 cls 和设备号 MKDEV(major,0) 创建一个设备节点 dev,并且指定该节点的名称为 "chrdev0"。第四行代码同样判断设备节点是否创建成功,如果为 NULL 则打印错误信息。最后一行代码用于打印输出创建成功的信息。
相关问题
/1. 声明一个 led 字符设备结构体 static struct cdev led_cdev; //2.1 声明一个设备号 static dev_t led_num; //声明一个 myled 的类指针 static struct class * led_class; //声明一个 led 的设备指针 static struct device *led_device; //4.定义一个文件操作集 int led_open(struct inode * inode, struct file *file) { printk(KERN_INFO"led_open\n"); return 0; } //ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t led_write(struct file * file, const char __user * buff, size_t len, loff_t * offset) { int rt; char kbuf[64]={0}; if(buff==NULL) return -EINVAL; if(len > sizeof kbuf) len=sizeof kbuf; //注释:unsigned long copy_from_user(void *to, const void __user *from, unsigned long n) rt=copy_from_user(kbuf,buff,len); len=len-rt; printk("copy from user buf is %s,len=%d\n",buff,len); return len; } //注释:ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t led_read(struct file *file, char __user * buff, size_t len, loff_t * offset) { int rt; char kbuff[64]="I'm kernel data"; if(buff==NULL) return -EINVAL; if(len > sizeof kbuff) len=sizeof kbuff; rt=copy_to_user(buff, kbuff, strlen(kbuff)); len=strlen(kbuff)-rt; printk("len=%d\n",len); return len; } int led_close(struct inode * inode, struct file *file) { printk("led_close\n"); return 0; } struct file_operations led_fops={ .owner = THIS_MODULE, .open = led_open, .write = led_write, .read = led_read, .release = led_close }; static int __init kernel_init(void) { int re; //2.2 构建一个设备号,主设备号为 240,次设备号为 0 led_num=MKDEV(240,0); /3. 注册是设备号 re=register_chrdev_region(led_num, 1, "myled"); if(re<0) { printk("register_chrdev_region error\n"); goto err_register_chrdev_region; } cdev_init(&led_cdev,&led_fops); re=cdev_add(&led_cdev, led_num, 1); if(re<0) { printk("cdev_add failed\n"); goto err_cdev_add; } //创建 myled 的设备类/sys/class 目录中找到 led_class=class_create(THIS_MODULE,"myled"); if(IS_ERR(led_class)) { printk(KERN_INFO"class create error\n"); re=PTR_ERR(led_class); goto err_class_create; } //创建设备类成功创建 myled 的设备信息 led_device=device_create(led_class,NULL,led_num,NULL,"myled"); if (IS_ERR(led_device)) { re = PTR_ERR(led_device); printk("device_create leds device fail\n"); goto err_device_create; } printk(KERN_INFO"mylded_drv\n"); return 0; err_device_create: class_destroy(led_class); err_class_create: cdev_del(&led_cdev); err_cdev_add: unregister_chrdev_region(led_num, 1); return re; err_register_chrdev_region: return re; } static void __exit kernel_exit(void) { device_destroy(led_class,led_num); class_destroy(led_class); cdev_del(&led_cdev); unregister_chrdev_region(led_num, 1); printk("exit myled_drv\n"); } module_init(kernel_init); module_exit(kernel_exit); MODULE_AUTHOR("wangna wangna@blackfin.uclinux.org 1351234556"); MODULE_DESCRIPTION("kernel module test"); MODULE_LICENSE("GPL");为以上代码增加注释
/*
* 该模块实现了一个 led 字符设备,在 /dev 目录下创建 myled 设备文件。
* 本模块实现了文件操作集中的 open、write、read 和 close 函数。
* 使用 register_chrdev_region 函数注册了设备号,使用 cdev_add 函数将设备添加到系统中。
* 使用 class_create 函数创建了 myled 的设备类,使用 device_create 函数创建了 myled 的设备信息。
* 最后使用 module_init 和 module_exit 宏定义了 init 和 exit 函数,并且指定了模块的作者、描述和许可证。
*/
int BEEP_init(void) { int result; int err; // int i; dev_t devno = MKDEV(BEEP_major, 0); /* 申请设备号*/ if (BEEP_major) result = register_chrdev_region(devno, 1, "ioctrl"); else /* 动态申请设备号 */ { result = alloc_chrdev_region(&devno, 0, 1, "ioctl"); BEEP_major = MAJOR(devno); } if (result < 0) return result; /* 动态申请设备结构体的内存*/ BEEP_devp = kmalloc(sizeof(struct BEEP_dev), GFP_KERNEL); if (!BEEP_devp) /*申请失败*/ { result = - ENOMEM; goto fail; } memset(BEEP_devp, 0, sizeof(struct BEEP_dev)); BEEP_setup_cdev(BEEP_devp, 0); ioctrl_class = class_create(THIS_MODULE, "ioctrldev"); device_create(ioctrl_class, NULL, MKDEV(BEEP_major, 0), NULL, "ioctrldev"); printk("set reg\n"); err = gpio_request_array(beeps, ARRAY_SIZE(beeps)); if(err<0) //成功返回0 { printk(KERN_ERR "faibeep to request gpio for beep pin\n"); return err; } printk(DEVICE_NAME"\tinitialized\n"); return result; fail:unregister_chrdev_region(devno, 1); return result; }
这是字符设备驱动 BEEP 的初始化函数 BEEP_init。该函数主要完成以下几个步骤:
1.申请设备号:如果已经定义了 BEEP_major,直接使用 register_chrdev_region 函数申请设备号;否则使用 alloc_chrdev_region 函数动态申请设备号,并将申请到的主设备号赋值给 BEEP_major。
2.动态申请设备结构体内存:使用 kmalloc 函数动态申请一个 BEEP_dev 结构体的内存,并将该结构体清零。
3.初始化和注册字符设备 cdev:调用 BEEP_setup_cdev 函数初始化和注册字符设备的 cdev 结构体。
4.创建设备文件:调用 class_create 和 device_create 函数创建设备文件,其中 ioctrl_class 是一个 class 结构体变量,用于表示设备文件的类别。
5.申请 GPIO 资源:调用 gpio_request_array 函数申请 beep 所需的 GPIO 资源。
6.返回初始化结果:如果初始化成功,函数返回 0;否则,函数返回负数错误码,并清理之前申请的资源。
在函数中,还有一些 printk 函数用于输出调试信息。
阅读全文