LOSS_train.append(train_sum_loss / train_n) ACC_train.append(train_sum_acc / train_n)
时间: 2023-09-20 11:04:18 浏览: 129
这两行代码是在训练神经网络时记录每个 epoch 的训练损失和准确率。其中,LOSS_train是一个列表,用于存储每个 epoch 的训练损失;ACC_train也是一个列表,用于存储每个 epoch 的训练准确率。train_sum_loss和train_sum_acc分别表示当前 epoch 中所有样本的损失和准确率之和,train_n表示当前 epoch 中样本的数量。这两行代码的作用是计算并记录当前 epoch 的平均损失和准确率。
相关问题
def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))
这是一个基于PyTorch框架的CNN模型的训练过程。代码中定义了两个函数:train和test,分别用于训练模型和测试模型。
在训练过程中,首先将模型设置为训练模式,然后遍历训练数据集,对每个batch的数据进行前向传播、反向传播和优化器更新。在每个batch的训练结束后,计算该batch的损失和精度,并将其累加到总的训练损失和训练精度中。
在测试过程中,首先将模型设置为评估模式,然后遍历测试数据集,对每个batch的数据进行前向传播和损失计算。在每个batch的测试结束后,计算该batch的损失和精度,并将其累加到总的测试损失和测试精度中。
最后,将训练过程中的损失和精度以及测试过程中的损失和精度保存到相应的列表中,并打印出当前epoch的训练损失、训练精度、测试损失和测试精度。
整个训练过程会重复执行500个epoch,每个epoch都是一个完整的训练和测试过程。
for epoch in range(n_epochs): running_loss = 0.0 correct_train = 0 correct_val = 0 # 训练集 for i, (inputs, labels) in enumerate(train_loader, 0): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) correct_train += (predicted == labels).sum().item() train_acc.append(correct_train / len(train_dataset)) train_loss.append(running_loss / len(train_loader))
这是一个用 Python 语言写出的 for 循环。它的作用是在一个神经网络训练过程中迭代地进行多次训练,即一个 epoch。在循环开始时,定义了三个变量:running_loss、correct_train 和 correct_val,都初始化为 0。在循环的每一次迭代过程中,这三个变量都会被更新,记录训练过程中的损失值和正确率。n_epochs 是训练的轮数。
阅读全文