给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (m+n)) 。

时间: 2024-05-27 20:08:56 浏览: 164
好的,这是一道比较经典的算法题,可以使用二分查找和分治思想来解决。 首先,我们可以将问题转化为求两个有序数组中第 k 小的数。其中,k 为两个数组的总长度除以 2,或者总长度除以 2 向上取整的值(如果总长度为奇数,则中位数为第 (m+n)/2 + 1 小的数)。 接下来,我们可以使用二分查找的思想来解决。假设我们要找的第 k 小的数为 mid,那么我们可以分别在 nums1 和 nums2 中查找第一个大于等于 mid 的数的位置,分别为 i 和 j。如果 i+j=k,那么 mid 就是两个数组中的第 k 小的数;如果 i+j<k,那么 mid 一定在 nums1[i:] 和 nums2[j:] 中,我们可以递归地在这两个数组中查找第 k-i-j 小的数;如果 i+j>k,那么 mid 一定在 nums1[:i] 和 nums2[:j] 中,我们可以递归地在这两个数组中查找第 k 小的数。 具体实现细节可以看代码:
相关问题

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数

### 回答1: 中位数是指将一个集合分为两个长度相等的子集,其中一个子集中的元素总是大于另一个子集中的元素。对于给定的两个正序数组,可以将它们合并成一个有序数组,然后找到这个有序数组的中位数。 如果两个数组的长度之和为奇数,中位数就是有序数组中间的那个元素;如果长度之和为偶数,中位数就是有序数组中间两个元素的平均值。 具体实现可以使用归并排序的思想,将两个数组合并成一个有序数组,然后根据长度之和的奇偶性找到中位数。时间复杂度为 O(m+n)。 ### 回答2: 题目描述 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2,请你找出并返回这两个正序数组的中位数。 示例 示例1: 输入: nums1 = [1,3] nums2 = [2] 输出:2 示例2: 输入: nums1 = [1,2] nums2 = [3,4] 输出:2.5 解释: 合并数组后为 [1,2,3,4],中位数为 (2 + 3) / 2 = 2.5 解法 由于已知nums1和nums2都是正序,所以我们可以分别尝试对两个数组进行二分查找,找到两个数组的中位数对应的位置。 首先,选定两个数组中位数的位置: - 对于一个长度为n的正序数组,中位数的位置可以是n/2,也可以是(n-1)/2,因为n/2就是中位数所在的位置,但(n-1)/2和n/2的结果是一样的,因为这两个位置对应的两个数的差值对中位数的影响是一样的。 - 所以对于长度为m的nums1和长度为n的nums2,选定中位数的位置应该是(m+n+1)/2和(m+n+2)/2两个位置。 然后,我们对nums1进行二分查找,找到一个位置i,使得: nums1[i-1] <= nums2[j] && nums2[j-1] <= nums1[i] 我们可以将这个位置i称为“分割线”,分割线左边的元素可以组成一个长度为i+j-1的有序数组,右边的元素可以组成一个长度为m+n-i-j+1的有序数组。 对于奇数的情况,中位数就是分割线左边的元素和分割线右边的元素中较大的那个。 对于偶数的情况,中位数就是分割线左边的元素和分割线右边的元素的平均数。 代码 ### 回答3: 首先,我们需要了解中位数的定义。中位数是一组数据中居于中间位置的数,即把一组数从小到大或从大到小排序后,位于中间位置(如果有偶数个数,则取中间两个数的平均值)的数字。因此,要求解这两个正序数组的中位数,我们需要先将它们合并成一个有序数组,然后找出中间位置的数或两个数的平均值。 合并两个有序数组的方法有很多种,这里介绍一种比较简单的方法:使用双指针法,分别指向两个数组的起始位置,逐个比较两个指针所指的数,将较小的数存入一个新数组中,并将指针后移,直到任意一个数组的数被取完,再将剩余的数组中的数依次存入新数组中。最终得到的新数组就是合并后的有序数组。 接下来,我们需要确定中位数的位置。假设两个有序数组的长度分别为 m 和 n,那么它们的中位数要么是第 (m+n)/2 个数,要么是第 (m+n)/2 和 (m+n)/2+1 个数的平均值(当 m+n 为偶数时)。 因此,我们可以使用双指针法,同时遍历两个有序数组,记录已经遍历的数的个数,当遍历到第 (m+n)/2 或 (m+n)/2+1 个数时,就可以得到中位数。 下面是使用双指针法求解两个有序数组的中位数的 Python 代码实现: ```python class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: m, n = len(nums1), len(nums2) nums = [] i, j = 0, 0 while i < m and j < n: if nums1[i] < nums2[j]: nums.append(nums1[i]) i += 1 else: nums.append(nums2[j]) j += 1 nums += nums1[i:] nums += nums2[j:] k = (m + n) // 2 if (m + n) % 2 == 0: return (nums[k-1] + nums[k]) / 2 else: return nums[k] ``` 该算法的时间复杂度为 O(m+n),空间复杂度为 O(m+n)。需要注意的是,由于 Python 中整数除法运算会向下取整,因此计算中位数位置时需要使用 (m+n)//2 和 (m+n)//2+1。

用JS实现给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

好的,这是一道很经典的算法题,需要用到二分查找和数组操作。以下是实现代码: ```javascript function findMedianSortedArrays(nums1, nums2) { const m = nums1.length; const n = nums2.length; if (m > n) { return findMedianSortedArrays(nums2, nums1); } let left = 0; let right = m; while (left <= right) { const i = Math.floor((left + right) / 2); const j = Math.floor((m + n + 1) / 2) - i; const maxLeftA = i === 0 ? -Infinity : nums1[i - 1]; const minRightA = i === m ? Infinity : nums1[i]; const maxLeftB = j === 0 ? -Infinity : nums2[j - 1]; const minRightB = j === n ? Infinity : nums2[j]; if (maxLeftA <= minRightB && maxLeftB <= minRightA) { if ((m + n) % 2 === 0) { return (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2; } else { return Math.max(maxLeftA, maxLeftB); } } else if (maxLeftA > minRightB) { right = i - 1; } else { left = i + 1; } } } ``` 这个函数的时间复杂度是 $O(log(min(m, n)))$,因为每次都能将搜索范围减半。
阅读全文

相关推荐

最新推荐

recommend-type

PHP语言基础知识详解及常见功能应用.docx

本文详细介绍了PHP的基本语法、变量类型、运算符号以及文件上传和发邮件功能的实现方法,适合初学者了解和掌握PHP的基础知识。
recommend-type

公司金融课程期末考试题目

公司金融整理的word文档
recommend-type

适用于 Python 应用程序的 Prometheus 检测库.zip

Prometheus Python客户端Prometheus的官方 Python 客户端。安装pip install prometheus-client这个包可以在PyPI上找到。文档文档可在https://prometheus.github.io/client_python上找到。链接发布发布页面显示项目的历史记录并充当变更日志。吡啶甲酸
recommend-type

DFC力控系统维护及使用

DFC力控系统维护及使用
recommend-type

Spring Data的书籍项目,含多数据库相关内容.zip

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。