function center_likelihood = getCenterLikelihood(object_likelihood, m) %GETCENTERLIKELIHOOD computes the sum over rectangles of size M. % CENTER_LIKELIHOOD is the 'colour response' [h,w] = size(object_likelihood); n1 = h - m(1) + 1; n2 = w - m(2) + 1; %% equivalent MATLAB function SAT = integralImage(object_likelihood); i = 1:n1; j = 1:n2; center_likelihood = (SAT(i,j) + SAT(i+m(1), j+m(2)) - SAT(i+m(1), j) -SAT(i, j+m(2))) / prod(m); end

时间: 2024-04-03 12:34:44 浏览: 6
这段代码是用来计算一个矩阵中大小为M的矩形的像素值之和的平均值,也可以看作是该矩形的颜色响应值。这个函数的输入参数object_likelihood是一个二维矩阵,表示某个物体的像素概率分布,而m是一个长度为2的向量,表示矩形的高度和宽度。其中,SAT是输入矩阵的积分图像,用于加速像素值之和的计算。最后,函数返回值center_likelihood是一个标量,表示矩形的颜色响应值的平均值。
相关问题

function center_likelihood = getCenterLikelihood(object_likelihood, m) %GETCENTERLIKELIHOOD computes the sum over rectangles of size M. % CENTER_LIKELIHOOD is the 'colour response' [h,w] = size(object_likelihood); n1 = h - m(1) + 1; n2 = w - m(2) + 1; %% equivalent MATLAB function SAT = integralImage(object_likelihood); i = 1:n1; j = 1:n2; center_likelihood = (SAT(i,j) + SAT(i+m(1), j+m(2)) - SAT(i+m(1), j) - SAT(i, j+m(2))) / prod(m); end

这是一个 MATLAB 函数,用于计算输入的概率图像 object_likelihood 中,所有大小为 m 的矩形区域的像素值之和的均值。这里用到了积分图像的技术,先通过 integralImage 函数计算出 object_likelihood 的积分图像 SAT,然后利用 SAT 的性质快速计算矩形区域的像素值之和。最后将像素值之和除以矩形区域的像素数 prod(m),得到均值作为该矩形区域的中心响应 center_likelihood。 具体来说,该函数首先获取 object_likelihood 的大小 [h,w],然后计算出可以包含大小为 m 的矩形区域的行数 n1 和列数 n2。接着调用 integralImage 函数计算出 object_likelihood 的积分图像 SAT。然后利用两个循环变量 i 和 j,分别遍历所有可以包含大小为 m 的矩形区域的起始行和起始列。对于每个起始位置,利用 SAT 计算该矩形区域的像素值之和,并将其除以矩形区域的像素数 prod(m) 得到均值 center_likelihood。最后将所有矩形区域的均值存储到 center_likelihood 中并返回。

解释一下这段代码 [likelihood_map] = getColourMap(im_patch_pwp, bg_hist, fg_hist, p.n_bins, p.grayscale_sequence); % (TODO) in theory it should be at 0.5 (unseen colors shoud have max entropy) likelihood_map(isnan(likelihood_map)) = 0; % each pixel of response_pwp loosely represents the likelihood that % the target (of size norm_target_sz) is centred on it response_pwp = getCenterLikelihood(likelihood_map, p.norm_target_sz);

这段代码的作用是获取一个颜色地图的概率分布图。首先,将输入的图像块(im_patch_pwp)和背景直方图(bg_hist)以及前景直方图(fg_hist)作为输入,根据颜色分布计算像素点的概率值,并将结果存储在likelihood_map中。其中,p.n_bins表示直方图的bin数量,p.grayscale_sequence表示是否将图像转换为灰度图像。接着,将likelihood_map中的NaN值设为0,最后通过getCenterLikelihood函数计算得到response_pwp,该值表示图像块中每个像素点作为目标中心的可能性。

相关推荐

解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

JavaScript_超过100种语言的纯Javascript OCR.zip

JavaScript
recommend-type

JavaScript_跨平台React UI包.zip

JavaScript
recommend-type

node-v16.17.0-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。