ValueError: DataFrame.dtypes for data must be int, float, bool or category. When categorical type is supplied, The experimental DMatrix parameter`enable_categorical` must be set to `True`. Invalid columns:HomePlanet: object, CryoSleep: object, Cabin: object, Destination: object, VIP: object出现了什么问题该怎么解决
时间: 2023-12-03 17:43:57 浏览: 386
这个错误是由于数据集中有非数值类型的列,即HomePlanet、CryoSleep、Cabin、Destination和VIP这几列数据类型为object,而XGBoost默认只支持数值类型的特征,不支持字符串类型的特征。解决这个问题需要将这几列转换为数值类型。
方法一:将这几列转换为数值类型。可以使用pandas中的astype()方法将这几列转换为int或float类型。
```python
df['HomePlanet'] = df['HomePlanet'].astype('int')
df['CryoSleep'] = df['CryoSleep'].astype('int')
df['Cabin'] = df['Cabin'].astype('int')
df['Destination'] = df['Destination'].astype('int')
df['VIP'] = df['VIP'].astype('int')
```
方法二:使用LabelEncoder将这几列转换为数值类型。LabelEncoder可以将字符串类型的特征转换为整数类型的特征。
```python
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['HomePlanet'] = le.fit_transform(df['HomePlanet'])
df['CryoSleep'] = le.fit_transform(df['CryoSleep'])
df['Cabin'] = le.fit_transform(df['Cabin'])
df['Destination'] = le.fit_transform(df['Destination'])
df['VIP'] = le.fit_transform(df['VIP'])
```
转换后再次训练模型即可。如果还是出现相同的错误,则需要在构建DMatrix对象时设置enable_categorical参数为True,启用分类特征的支持,例如:
```python
dtrain = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
```
阅读全文