A negative unity feedback system has a feedforward function defined as G(s) = 250 * (2s + 5) * (s^2 + 6s + 34) / ((s + 7) * (50s^4 + 644s^3 + 996s^2 - 739s - 3559)) The input to the system is r(t) = u(t). You will need to provide a Matlab code to find the gain K and closed loop pole locations for a 41% overshoot, motivate if a second order approximation is acceptable?

时间: 2024-03-15 19:45:56 浏览: 17
Sure, I can help you with that! Here's the Matlab code to find the gain K and closed loop pole locations for a 41% overshoot: ``` % Define the feedforward function G(s) num = [250, 1250, 4250, 8500]; den = [50, 694, 1690, -739, -3559]; G = tf(num, den); % Define the input function r(t) t = 0:0.01:10; r = ones(size(t)); % Calculate the closed loop transfer function T(s) K = 1 / (1 - 0.41); % Calculate the gain K for a 41% overshoot T = feedback(K * G, 1); % Plot the step response of the closed loop system step(T); % Calculate the closed loop pole locations p = pole(T); disp(p); % Check if a second order approximation is acceptable z = zero(G); wn = sqrt(abs(z(1))^2 + abs(z(2))^2); % Calculate the natural frequency zeta = (-real(z(1))*real(z(2))) / (wn*abs(z(1)+z(2))); % Calculate the damping ratio if zeta >= 0.5 disp("A second order approximation is acceptable."); else disp("A second order approximation is not acceptable."); end ``` In this code, we define the feedforward function `G(s)` using its numerator and denominator coefficients. We also define the input function `r(t)` as a unit step function. We then use the `feedback` function to calculate the closed loop transfer function `T(s)` for a gain `K` that results in a 41% overshoot. We plot the step response of the closed loop system to visualize its behavior. Finally, we use the `pole` function to calculate the closed loop pole locations, and we check if a second order approximation is acceptable by calculating the system's natural frequency `wn` and damping ratio `zeta`. If `zeta >= 0.5`, then a second order approximation is acceptable. I hope this helps! Let me know if you have any further questions.

相关推荐

最新推荐

recommend-type

Unity3D Shader实现扫描显示效果(2)

主要为大家详细介绍了Unity3D Shader实现扫描显示效果,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Unity Shader实现2D游戏迷雾

本文实例为大家分享了Unity Shader实现2D游戏迷雾的具体代码,供大家参考,具体内容如下 先看效果吧。 我使用的是屏幕后处理效果,首先先去Photoshop做一张图片如下,用画笔点一个点就可以了,使用它来对摄像机...
recommend-type

Unity+NGUI性能优化方法总结

Unity+NGUI性能优化方法总结---优化 资源分离打包与加载是最有效的减小安装包体积与运行时内存占用的手段。一般打包粒度越细,这两个指标就越小;而且当两个renderQueue相邻的DrawCall使用了相同的贴图、材质和...
recommend-type

Unity实现弧形移动效果

主要为大家详细介绍了Unity实现弧形移动效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Unity实现喷漆效果

主要为大家详细介绍了Unity实现喷漆效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。