C++ tensorRT部署real-esrgan onnx转engine 输入Mat 输出Mat

时间: 2024-02-01 16:16:32 浏览: 112
TensorRT是一个高性能的深度学习推理库,可以用来加速模型的推理过程。要在C++中使用TensorRT部署Real-RGAN模型,需要进行以下步骤: 1. 将Real-ESRGAN模型转换为ONNX格式。 2. 使用TensorRT API将ONNX模型转换为TensorRT引擎。 3. 使用TensorRT引擎进行推理。 下面是一个简单的C++代码示例,用于将ONNX模型转换为TensorRT引擎,并进行推理: ```c++ #include <iostream> #include <fstream> #include <vector> #include <opencv2/opencv.hpp> #include <NvInfer.h> #include <NvOnnxParser.h> using namespace std; using namespace nvinfer1; using namespace nvonnxparser; int main() { // Step 1: Load the ONNX model const string onnx_model_path = "real_esrgan.onnx"; ifstream onnx_file(onnx_model_path, ios::binary); onnx_file.seekg(0, ios::end); const size_t onnx_size = onnx_file.tellg(); onnx_file.seekg(0, ios::beg); vector<char> onnx_buf(onnx_size); onnx_file.read(onnx_buf.data(), onnx_size); // Step 2: Create the TensorRT engine IRuntime* runtime = createInferRuntime(logger); ICudaEngine* engine = runtime->deserializeCudaEngine(onnx_buf.data(), onnx_buf.size(), nullptr); IExecutionContext* context = engine->createExecutionContext(); // Step 3: Prepare input and output buffers const int batch_size = 1; const int input_channels = 3; const int input_height = 256; const int input_width = 256; const int output_channels = 3; const int output_height = 1024; const int output_width = 1024; // Allocate memory for input and output buffers float* input_data = new float[batch_size * input_channels * input_height * input_width]; float* output_data = new float[batch_size * output_channels * output_height * output_width]; // Create input and output tensors ITensor* input_tensor = engine->getBindingTensor(0); ITensor* output_tensor = engine->getBindingTensor(1); // Create CUDA memory for input and output tensors void* input_cuda_mem, *output_cuda_mem; cudaMalloc(&input_cuda_mem, batch_size * input_channels * input_height * input_width * sizeof(float)); cudaMalloc(&output_cuda_mem, batch_size * output_channels * output_height * output_width * sizeof(float)); // Step 4: Run inference cv::Mat input_image = cv::imread("input.png"); cv::Mat input_resized; cv::resize(input_image, input_resized, cv::Size(input_width, input_height)); // Copy input data to CUDA memory cudaMemcpy(input_cuda_mem, input_data, batch_size * input_channels * input_height * input_width * sizeof(float), cudaMemcpyHostToDevice); // Set input tensor data input_tensor->setLocation(CUDA, input_cuda_mem); input_tensor->setDimensions({ batch_size, input_channels, input_height, input_width }); input_tensor->setType(DataType::kFLOAT); // Set output tensor data output_tensor->setLocation(CUDA, output_cuda_mem); output_tensor->setDimensions({ batch_size, output_channels, output_height, output_width }); output_tensor->setType(DataType::kFLOAT); // Run inference context->enqueue(batch_size, &input_cuda_mem, &output_cuda_mem, nullptr); // Copy output data from CUDA memory cudaMemcpy(output_data, output_cuda_mem, batch_size * output_channels * output_height * output_width * sizeof(float), cudaMemcpyDeviceToHost); // Convert output data to OpenCV Mat cv::Mat output_image(output_height, output_width, CV_32FC3, output_data); output_image.convertTo(output_image, CV_8UC3, 255.0); // Step 5: Save output image cv::imwrite("output.png", output_image); // Step 6: Cleanup cudaFree(input_cuda_mem); cudaFree(output_cuda_mem); delete[] input_data; delete[] output_data; context->destroy(); engine->destroy(); runtime->destroy(); return 0; } ``` 在这个示例中,我们首先加载了Real-ESRGAN模型的ONNX文件,然后使用TensorRT API将其转换为TensorRT引擎。接下来,我们准备了输入和输出缓冲区,并使用CUDA内存分配函数为它们分配了内存。然后,我们将输入数据复制到CUDA内存中,并设置了输入和输出Tensor的相关属性。最后,我们启动了推理过程,并将结果保存到输出文件中。最后,我们清理了使用的资源。 需要注意的是,该示例仅适用于输入和输出都是Mat的情况。如果你的输入和输出数据类型不同,请相应地修改代码。

相关推荐

最新推荐

recommend-type

C++中输入输出流及文件流操作总结

C++中的输入输出流是程序与外部世界交互的重要方式,主要涉及iostream库,包括标准输入输出流、文件流等操作。这些操作使得开发者能够方便地处理数据的输入和输出。 首先,`iomanip`头文件提供了格式化I/O的支持,...
recommend-type

Android将camera获取到的YuvData在jni中转化为Mat方法

Android将camera获取到的YuvData在jni中转化为Mat方法 一、 Android摄像头获取YuvData Android中可以通过camera获取图像,并实时处理,不同的手机camera支持的图像格式不同,可以采用getCameraPreviewFormat来...
recommend-type

OpenCV中的cv::Mat函数将数据写入txt文件

OpenCV中的cv::Mat函数将数据写入txt文件 OpenCV是一个功能强大的计算机视觉库,它提供了许多有用的函数和类来处理图像和视频。其中,cv::Mat是一个非常重要的类,它可以用来存储和处理图像和矩阵数据。在使用...
recommend-type

C++11 Unicode编码转换

在C++11标准中,Unicode编码转换是一个重要的更新,主要涉及了新的数据类型和字符串定义方式,以解决跨平台的Unicode字符处理问题。这里详细解释一下这些知识点: 1. **char16_t 和 char32_t 类型**: 在C++98之前...
recommend-type

C++实现英文句子中的单词逆序输出的方法

"C++实现英文句子中的单词逆序输出的方法" 在本文中,我们将介绍如何使用C++语言实现英文句子中的单词逆序输出的方法。该方法涉及C++字符串遍历、分割、截取、输出等相关操作技巧。 首先,我们需要了解C++语言中的...
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。