bike_=bike[['atemp', 'humidity', 'windspeed', 'season','count','season','holiday','workingday','weather']] bike_=pd.get_dummies(bike_,columns=['season','holiday','workingday','weather']) train=bike_.sample(frac=0.7) test=bike_[~bike_.index.isin(train.index)] xtrain,ytrain=train.drop('count',axis=1),train['count'] xtest,ytest=test.drop( 'count',axis=1),test['count'] from sklearn import linear_model##用于线性回归分析的模块 ols=linear_model.LinearRegression().fit(xtrain,ytrain)#linear_model是模块,这个模块下的类叫linearregression,类下有个函数叫fit ols.coef_ model = LinearRegression() # 训练模型 model.fit(xtrain,ytrain) # 预测 ypred=ols.predict(xtest) print(ols.score(xtrain,ytrain))怎么生成回归的那张表
时间: 2023-08-20 08:05:13 浏览: 195
共享单车训练数据bike-train.csv
这段代码是用来进行线性回归分析的,它并没有生成回归的表。但是,我们可以通过使用`matplotlib`库来绘制回归图,以便更好地理解回归分析的结果。下面是用`matplotlib`库绘制回归图的代码示例:
```
import matplotlib.pyplot as plt
# 绘制预测值与真实值的散点图
plt.scatter(ytest, ypred)
# 绘制一条直线表示理论上的完美拟合
plt.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], 'k--', lw=4)
# 添加图表标题和坐标轴标签
plt.xlabel('True Values')
plt.ylabel('Predictions')
# 显示图表
plt.show()
```
这段代码将会生成一张散点图,其中横轴表示真实值,纵轴表示预测值。理论上,如果模型完美拟合,所有的点将会落在直线上方。如果模型的预测效果很差,那么这些点将会分散在图表中。
阅读全文