keras Attention()举一个代码的例子
时间: 2023-11-28 17:50:50 浏览: 58
好的,下面是一个使用Keras的Attention层的示例代码:
```python
from keras.layers import *
from keras.models import Model
定义Attention层
class Attention(Layer):
def __init__(self, step_dim, **kwargs):
self.supports_masking = True
self.step_dim = step_dim
super(Attention, self).__init__(**kwargs)
def build(self, input_shape):
assert len(input_shape) == 3
self.W = self.add_weight(shape=(input_shape[-1],),
initializer='normal',
trainable=True)
super(Attention, self).build(input_shape)
def call(self, x, mask=None):
eij = K.reshape(K.dot(K.reshape(x, (-1, self.step_dim)),
K.reshape(self.W, (self.step_dim, 1))),
(-1, input_shape[1]))
ai = K.exp(eij)
weights = ai / K.sum(ai, axis=1).dimshuffle(0, 'x')
weighted_input = x * weights.dimshuffle(0, 1, 'x')
return weighted_input.sum(axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], input_shape[-1]
# 定义模型
inputs = Input(shape=(sequence_length,), dtype='int32')
embedding = Embedding(input_dim=vocab_size, output_dim=embedding_size,
input_length=sequence_length)(inputs)
lstm = LSTM(units=hidden_size, return_sequences=True)(embedding)
attention = Attention(step_dim=sequence_length)(lstm)
output = Dense(units=num_classes, activation='softmax')(attention)
model = Model(inputs=inputs, outputs=output)
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
这是一个基于Keras的Attention层实现的文本分类模型。在这个模型中,我们首先定义了一个Attention层,用于学习输入序列中每个时间步的权重,然后将这些权重应用于输入序列的LSTM层的输出,得到最终的注意力向量,最后将其输入到全连接层进行分类。
阅读全文