用keras lstm写一个带有注意机制的例子,要用Attention
时间: 2023-12-10 19:37:25 浏览: 70
好的,这里是一个使用Keras LSTM和注意力机制的例子,实现对IMDB数据集进行情感分类。
首先,我们需要导入所需的库:
```python
import numpy as np
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Dropout, Embedding
```
然后,我们需要加载IMDB数据集:
```python
from keras.datasets import imdb
max_features = 20000
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
maxlen = 80
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
```
接下来,我们将定义模型。在这里,我们将使用一个LSTM层和一个带有softmax激活函数的全连接层进行分类。此外,我们将添加一个注意力机制来提高模型的性能。
```python
embedding_dim = 128
lstm_dim = 64
inputs = Input(shape=(maxlen,))
embed = Embedding(max_features, embedding_dim)(inputs)
lstm = LSTM(lstm_dim, return_sequences=True)(embed)
# 计算注意力权重
attention = Dense(1, activation='tanh')(lstm)
attention = Dropout(0.5)(attention)
attention = Dense(maxlen, activation='softmax')(attention)
attention = Dropout(0.5)(attention)
# 应用注意力权重
context = np.dot(attention, lstm)
output = Dense(1, activation='sigmoid')(context)
model = Model(inputs=inputs, outputs=output)
```
最后,我们编译并训练模型:
```python
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=32,
epochs=10,
validation_data=(x_test, y_test))
```
完整的代码如下所示:
```python
import numpy as np
from keras.datasets import imdb
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Dropout, Embedding
from keras.preprocessing import sequence
max_features = 20000
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
maxlen = 80
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
embedding_dim = 128
lstm_dim = 64
inputs = Input(shape=(maxlen,))
embed = Embedding(max_features, embedding_dim)(inputs)
lstm = LSTM(lstm_dim, return_sequences=True)(embed)
# 计算注意力权重
attention = Dense(1, activation='tanh')(lstm)
attention = Dropout(0.5)(attention)
attention = Dense(maxlen, activation='softmax')(attention)
attention = Dropout(0.5)(attention)
# 应用注意力权重
context = np.dot(attention, lstm)
output = Dense(1, activation='sigmoid')(context)
model = Model(inputs=inputs, outputs=output)
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=32,
epochs=10,
validation_data=(x_test, y_test))
```
阅读全文