ldr,r9,=0x12345678

时间: 2023-08-18 13:10:42 浏览: 46
"ldr r9, =0x12345678" 是一条汇编指令,通常用于将一个指定的立即数加载到寄存器 r9 中。 在这个指令中,"ldr" 是操作码(opcode),表示执行加载(load)操作;"r9" 是目标寄存器,表示要将立即数加载到该寄存器中;"=0x12345678" 是立即数,表示要加载到寄存器中的常量值。 可以将这条指令翻译成类似于下面的伪代码: ``` r9 = 0x12345678 ``` 也就是将立即数 0x12345678 加载到寄存器 r9 中。 需要注意的是,"ldr" 指令通常用于从内存中加载数据到寄存器中,而这里使用了一个立即数作为数据源,因此使用了 "=0x12345678" 的形式来表示数据源。
相关问题

mov r0,#0x0c000000 ldr r9,=0x12345678 STR9,[r0] Idr r3,{r0] r3=0x12345678 add r0,r0,#1 dr r4,[r0] r4=0x34567800 add r0,r0,#1 Idr r5,[r0] r5=0x56780000 add r0,r0,#1 Idr r6,[r0]

这个问题中包含了一些汇编指令,可以逐条解释如下: 1. `mov r0,#0x0c000000`:将立即数 0x0c000000 移动到寄存器 r0 中; 2. `ldr r9,=0x12345678`:将立即数 0x12345678 加载到寄存器 r9 中; 3. `STR9,[r0]`:将寄存器 r9 中的数据存储到地址为 r0 的内存中; 4. `ldr r3,[r0]`:从地址为 r0 的内存中加载数据到寄存器 r3 中; 5. `add r0,r0,#1`:将寄存器 r0 中的值加上 1; 6. `ldr r4,[r0]`:从地址为 r0 的内存中加载数据到寄存器 r4 中; 7. `add r0,r0,#1`:将寄存器 r0 中的值加上 1; 8. `ldr r5,[r0]`:从地址为 r0 的内存中加载数据到寄存器 r5 中; 9. `add r0,r0,#1`:将寄存器 r0 中的值加上 1; 10. `ldr r6,[r0]`:从地址为 r0 的内存中加载数据到寄存器 r6 中。 这些指令的作用是将立即数 0x12345678 存储到地址为 0x0c000000 的内存中,然后从该地址开始依次加载 4 个字节的数据到寄存器 r3、r4、r5 和 r6 中,每次加载完后将地址加 1。最终,r3、r4、r5 和 r6 中分别存储了内存中连续的 4 个字节的数据,分别为 0x12345678、0x34567800、0x56780000 和 内存中下一个字节的值。

请详细解释一下整段代码中寄存器的作用并给出每个寄存器值的变化COUNT EQU 0x40008000 ; 定义一个变量,地址为0x8000 AREA Example,CODE,READONLY ; 声明代码段Example ENTRY ; 标识程序入口 CODE32 ; 声明32位ARM指令 START LDR R0,=COUNT ; R1 <- COUNT LDR R1,=MyData1 ; [R1] <- R0 LDR R5,=COUNT LDR R2,[R5],#64 MOV R13,#0x0f0 LDR R3,=COUNT LDR R4,=COUNT B strcopy zero LDR R5,=COUNT LDR R1,[R5],#62 CMP R8,R9 ; R1与R2比较 BHS LOOP BLO LOOP LOOP LDRH R1,[R3],#2 LDRH R2,[R3] CMP R1,R2 ; R1与R2比较 BHS second BLO first first LDRH R2,[R4],#2 CMP R3,R5 BEQ third BNE LOOP second SWPB R2, R2, [R4] LDRH R2,[R4],#2 SWPB R1, R1, [R4] CMP R3,R5 BEQ third BNE LOOP third LDR R3,=COUNT LDR R4,=COUNT B LOOP strcopy LDRH R2,[R1],#2 STRH R2,[R0],#2 CMP R0,R5 BEQ zero BNE strcopy MyData1 DCW 19,21,33,43,55,63,77,86,92,11,23,35,46,58,62,79,83,93,10,20,30,40,50,60,70,80,90,13,66,2,7,4 ;第1组数据 END

下面是每个寄存器在代码中的作用以及值的变化: R0:用于存储 COUNT 的地址,通过 LDR 指令将 COUNT 的地址加载到 R0 中,值为 0x40008000。 R1:用于存储 MyData1 的地址,通过 LDR 指令将 MyData1 的地址加载到 R1 中,值为 MyData1 的起始地址。 R2:用于存储需要比较的数据,通过 LDRH 指令加载 COUNT 中的数据或 MyData1 中的数据,值在不断变化。 R3:用于存储 COUNT 的地址,通过 LDR 指令将 COUNT 的地址加载到 R3 中,值为 0x40008000。 R4:用于存储 COUNT 的地址,通过 LDR 指令将 COUNT 的地址加载到 R4 中,值为 0x40008000。 R5:用于存储 COUNT 的地址,通过 LDR 指令将 COUNT 的地址加载到 R5 中,值为 0x40008000。 R8:用于存储比较的数据,值在不断变化。 R9:用于存储比较的数据,值在不断变化。 R13:用于存储堆栈指针,通过 MOV 指令将 R13 初始化为 0x0f0。 在代码执行过程中,寄存器的值不断变化,主要是 R2、R8 和 R9 的值在不断变化,代表正在进行比较的数据。另外,R0、R1、R3、R4 和 R5 的值保持不变,分别对应 COUNT 和 MyData1 的地址。R13 的值在代码开始时被初始化为 0x0f0,不会再改变。

相关推荐

这段代码中pc如何计算USR_STACK_LEGTH EQU 64 SVC_STACK_LEGTH EQU 0 FIQ_STACK_LEGTH EQU 16 IRQ_STACK_LEGTH EQU 64 ABT_STACK_LEGTH EQU 0 UND_STACK_LEGTH EQU 0 AREA Example5,CODE,READONLY ; 声明代码段Example5 ENTRY ; 标识程序入口 CODE32 ; 声明32位ARM指令 START MOV R0,#0 MOV R1,#1 MOV R2,#2 MOV R3,#3 MOV R4,#4 MOV R5,#5 MOV R6,#6 MOV R7,#7 MOV R8,#8 MOV R9,#9 MOV R10,#10 MOV R11,#11 MOV R12,#12 BL InitStack ; 初始化各模式下的堆栈指针 ; 打开IRQ中断 (将CPSR寄存器的I位清零) MRS R0,CPSR ; R0 <= CPSR BIC R0,R0,#0x80 MSR CPSR_cxsf,R0 ; CPSR <= R0 ; 切换到用户模式 MSR CPSR_c, #0xd0 MRS R0,CPSR ; 切换到管理模式 MSR CPSR_c, #0xdf MRS R0,CPSR HALT B HALT ; 堆栈初始化 InitStack MOV R0, LR ; R0 <= LR,因为各种模式下R0是相同的 MSR CPSR_c, #0xd3 ;设置管理模式堆栈 LDR SP, StackSvc MSR CPSR_c, #0xd2 ;设置中断模式堆栈 LDR SP, StackIrq MSR CPSR_c, #0xd1 ;设置快速中断模式堆栈 LDR SP, StackFiq MSR CPSR_c, #0xd7 ;设置中止模式堆栈 LDR SP, StackAbt MSR CPSR_c, #0xdb ;设置未定义模式堆栈 LDR SP, StackUnd MSR CPSR_c, #0xdf ;设置系统模式堆栈 LDR SP, StackUsr MOV PC, R0 StackUsr DCD UsrStackSpace + (USR_STACK_LEGTH - 1)*4 StackSvc DCD SvcStackSpace + (SVC_STACK_LEGTH - 1)*4 StackIrq DCD IrqStackSpace + (IRQ_STACK_LEGTH - 1)*4 StackFiq DCD FiqStackSpace + (FIQ_STACK_LEGTH - 1)*4 StackAbt DCD AbtStackSpace + (ABT_STACK_LEGTH - 1)*4 StackUnd DCD UndtStackSpace + (UND_STACK_LEGTH - 1)*4 ; 分配堆栈空间 AREA MyStacks, DATA, NOINIT, ALIGN=2 UsrStackSpace SPACE USR_STACK_LEGTH * 4 ; 用户(sys)模式堆栈SvcStackSpace SPACE SVC_STACK_LEGTH * 4 ; 管理模式堆栈空间 IrqStackSpace SPACE IRQ_STACK_LEGTH * 4 ; 中断模式堆栈空间 FiqStackSpace SPACE FIQ_STACK_LEGTH * 4 ; 快速中断模式堆栈空间 AbtStackSpace SPACE ABT_STACK_LEGTH * 4 ; 中止义模式堆栈空间 UndtStackSpace SPACE UND_STACK_LEGTH * 4 ; 未定义模式堆栈 END

最新推荐

recommend-type

node-v9.6.0-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Python基于机器学习的分布式系统故障诊断系统源代码,分布式系统的故障数据进行分析,设计故障诊断模型,高效地分析并识别故障类别

基于技术手段(包括但不限于机器学习、深度学习等技术)对分布式系统的故障数据进行分析,设计故障诊断模型,高效地分析并识别故障类别,实现分布式系统故障运维的智能化,快速恢复故障的同时大大降低分布式系统运维工作的难度,减少运维对人力资源的消耗。在分布式系统中某个节点发生故障时,故障会沿着分布式系统的拓扑结构进行传播,造成自身节点及其邻接节点相关的KPI指标和发生大量日志异常
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

设计算法实现将单链表中数据逆置后输出。用C语言代码

如下所示: ```c #include <stdio.h> #include <stdlib.h> // 定义单链表节点结构体 struct node { int data; struct node *next; }; // 定义单链表逆置函数 struct node* reverse(struct node *head) { struct node *prev = NULL; struct node *curr = head; struct node *next; while (curr != NULL) { next
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种
recommend-type

在xlwings里.循环读取A列和B列的数据。当A列某单元格值等于特品,且同行B列单元格值等于热销品时。在同行的C列单元格输出值999。这代码怎么写

您好!感谢您对ChitGPT的使用! 为了回答您的问题,您可以使用xlwings的API和Excel公式配合完成以下任务: ``` import xlwings as xw wb = xw.Book('workbook.xlsx') # 打开工作簿 sht = wb.sheets['Sheet1'] # 打开工作表 # 遍历A列和B列数据 for i in range(1, sht.range('A' + str(sht.cells.last_cell.row)).end('up').row + 1): if sht.range(f'A{i}').value == '特品'