双向RRT的matlab代码
时间: 2024-02-12 10:52:34 浏览: 99
由于双向RRT算法比较复杂,代码也比较长,这里无法给出完整的matlab代码,但可以给出一个大致的框架和一些关键的函数实现。
1. 双向RRT框架
双向RRT的框架和单向RRT基本相同,只是需要维护两个树,分别从起点和终点开始生长,直到两个树相遇或者达到一定的迭代次数为止。
主要的函数有两个:`buildRRT`和`connectTrees`,前者用于生成RRT树,后者用于将两个树连接起来。
2. 关键的函数实现
(1) `extend`函数
与单向RRT相同,`extend`函数用于扩展树,每次从树上随机选择一个节点,并生成一个新的节点,使得这两个节点之间的距离不超过一个阈值。
(2) `nearest`函数
同样与单向RRT相同,`nearest`函数用于从树中找到离目标点最近的节点。
(3) `collisionFree`函数
由于双向RRT需要同时考虑起点和终点的障碍物情况,因此需要一个`collisionFree`函数来判断一个节点是否与起点或终点的障碍物碰撞。
(4) `connectTrees`函数
`connectTrees`函数用于将两个树连接起来。首先从起点树中找到最近的节点,然后从终点树中找到最近的节点,判断这两个节点之间是否存在一条连通的路径。如果存在,则将这两个节点相连接。
(5) `getPath`函数
`getPath`函数用于从连接后的树中找到一条从起点到终点的路径,并返回这条路径上的所有节点。
以上是双向RRT算法的主要实现函数,还需要一些辅助函数来辅助实现。如果需要完整的matlab代码,请自行搜索。
相关问题
双向rrt算法matlab代码
双向RRT(Rapidly-exploring Random Trees)算法是一种自动路径规划算法,可以有效地生成环境中的可行路径。其思想是在起始点和目标点同时生成两棵树,通过随机采样、节点扩展等操作,逐步生成路径。这种算法具有搜索空间小、路径规划速度快等优点。
下面是一段基于MATLAB语言实现的双向RRT算法代码:
% 双向RRT算法
% 设置起始点和目标点
start_pt = [0 0];
goal_pt = [10 10];
% 设置生成的树的节点个数
num_nodes = 300;
% 设置搜索空间大小
xlim = [0 15];
ylim = [0 15];
% 初始化两棵树
tree1 = [start_pt NaN];
tree2 = [goal_pt NaN];
% 树的节点扩展
for i = 1:num_nodes
% 从随机采样
rnd_pt = [xlim(1) + (xlim(2)-xlim(1))*rand(1) ylim(1) + (ylim(2)-ylim(1))*rand(1)];
% 从树中找到距离随机点最近的节点
idx1 = nearest(tree1, rnd_pt);
idx2 = nearest(tree2, rnd_pt);
nearest1 = tree1(idx1, 1:2);
nearest2 = tree2(idx2, 1:2);
% 对树进行节点扩展
newnode1 = steer(nearest1, rnd_pt, 0.1);
newnode2 = steer(nearest2, rnd_pt, 0.1);
% 判断新节点是否在障碍物内
if ~collision(newnode1)
tree1 = [tree1; newnode1 idx1];
end
if ~collision(newnode2)
tree2 = [tree2; newnode2 idx2];
end
% 判断树1和树2是否存在路径相交
[found, idx1, idx2] = check_path(tree1, tree2);
if found
% 路径点的追溯
path1 = trace_path(tree1, idx1);
path2 = trace_path(tree2, idx2);
% 合并路径
path = [path1; flipud(path2)];
% 绘制路径
plot(path(:,1), path(:,2), 'r', 'LineWidth', 2);
return;
end
end
% 绘制最终生成的两棵树
plot(tree1(:,1), tree1(:,2), 'b.', 'MarkerSize', 10);
plot(tree2(:,1), tree2(:,2), 'g.', 'MarkerSize', 10);
function idx = nearest(tree, rnd_pt)
% 找到距离随机点最近的节点
d = sqrt(sum(bsxfun(@minus, tree(:,1:2), rnd_pt).^2, 2));
[~, idx] = min(d);
end
function newnode = steer(nearest, rnd_pt, factor)
% 生成新的节点
newnode = nearest + factor*(rnd_pt - nearest);
end
function flag = collision(node)
% 判断节点是否在障碍物内
flag = false;
if node(1) < 2 || node(1) > 13 || node(2) < 2 || node(2) > 13
flag = true;
end
end
function [found, idx1, idx2] = check_path(tree1, tree2)
% 判断树1和树2是否存在路径相交
found = false;
idx1 = 0;
idx2 = 0;
for i = 2:size(tree1, 1)
for j = 2:size(tree2, 1)
d = sqrt(sum((tree1(i,1:2) - tree2(j,1:2)).^2));
if d < 0.5
found = true;
idx1 = i;
idx2 = j;
return;
end
end
end
end
function path = trace_path(tree, idx)
% 路径追溯
path = [tree(idx,1:2)];
while ~isnan(tree(idx,3))
idx = tree(idx,3);
path = [path; tree(idx,1:2)];
end
end
以上代码是一个简单的双向RRT算法,可用于路径规划问题的求解。从代码中可见,该算法主要包括了随机采样、最近节点查找、节点扩展、路径相交判断等操作。通过这些操作,可以不断生成树和路径,最终求得起始点到目标点的一条可行路径。
双向RRT※算法MATLAB
您好!双向RRT(Rapidly-exploring Random Tree)算法是一种用于路径规划的算法,它通过两个随机生成的树(一棵从起点开始,另一棵从终点开始)来搜索可行路径。下面是一个使用MATLAB实现双向RRT算法的示例代码:
```matlab
function [path, tree] = bidirectionalRRT(start, goal, obstacles, mapSize, maxIter, stepSize)
% 初始化树的节点
tree.start.pos = start;
tree.start.parent = 0;
tree.goal.pos = goal;
tree.goal.parent = 0;
% 迭代搜索
for i = 1:maxIter
% 在起点树上随机采样一个点
if rand < 0.5
randPos = rand(1, 2) .* mapSize;
[nearestNode, ~] = nearestNeighbor(tree.start, randPos);
newNode.pos = steer(nearestNode.pos, randPos, stepSize);
newNode.parent = nearestNode;
% 检查新节点是否与障碍物相交
if ~collisionCheck(newNode.pos, nearestNode.pos, obstacles)
tree.start = addNode(tree.start, newNode);
tree.start = rewire(tree.start, newNode, stepSize);
% 检查新节点是否与终点树的节点相交
[goalNode, dist] = nearestNeighbor(tree.goal, newNode.pos);
if ~collisionCheck(newNode.pos, goalNode.pos, obstacles)
path = getPath(tree.start, newNode);
path = [path; flip(getPath(tree.goal, goalNode))];
return;
end
end
else
% 在终点树上随机采样一个点,过程与起点树相似
randPos = rand(1, 2) .* mapSize;
[nearestNode, ~] = nearestNeighbor(tree.goal, randPos);
newNode.pos = steer(nearestNode.pos, randPos, stepSize);
newNode.parent = nearestNode;
if ~collisionCheck(newNode.pos, nearestNode.pos, obstacles)
tree.goal = addNode(tree.goal, newNode);
tree.goal = rewire(tree.goal, newNode, stepSize);
[startNode, dist] = nearestNeighbor(tree.start, newNode.pos);
if ~collisionCheck(newNode.pos, startNode.pos, obstacles)
path = getPath(tree.start, startNode);
path = [path; flip(getPath(tree.goal, newNode))];
return;
end
end
end
end
path = [];
tree = [];
end
function [nearestNode, minDist] = nearestNeighbor(tree, pos)
nearestNode = tree;
minDist = norm(pos - tree.pos);
% 寻找最近的节点
queue = tree;
while ~isempty(queue)
node = queue(1);
queue(1) = [];
dist = norm(pos - node.pos);
if dist < minDist
minDist = dist;
nearestNode = node;
end
queue = [queue node.children];
end
end
function newPos = steer(fromPos, toPos, stepSize)
direction = toPos - fromPos;
distance = norm(direction);
if distance <= stepSize
newPos = toPos;
else
newPos = fromPos + direction / distance * stepSize;
end
end
function tree = addNode(tree, newNode)
newNode.children = [];
tree.children = [tree.children newNode];
end
function tree = rewire(tree, newNode, maxDist)
queue = newNode.children;
while ~isempty(queue)
node = queue(1);
queue(1) = [];
dist = norm(newNode.pos - node.pos);
if dist <= maxDist
node.parent = newNode;
queue = [queue node.children];
end
end
end
function collides = collisionCheck(pos1, pos2, obstacles)
collides = false;
for i = 1:size(obstacles, 1)
if lineSegmentIntersectsPolygon(pos1, pos2, obstacles{i})
collides = true;
return;
end
end
end
function intersects = lineSegmentIntersectsPolygon(pos1, pos2, polygon)
intersects = false;
for i = 1:size(polygon, 1)
pos3 = polygon(i, :);
pos4 = polygon(mod(i, size(polygon, 1)) + 1, :);
if lineSegmentsIntersect(pos1, pos2, pos3, pos4)
intersects = true;
return;
end
end
end
function intersects = lineSegmentsIntersect(pos1, pos2, pos3, pos4)
intersects = false;
p1 = pos1';
p2 = pos2';
q1 = pos3';
q2 = pos4';
r = p2 - p1;
s = q2 - q1;
uNumerator = cross(q1 - p1, r);
denominator = cross(r, s);
if denominator == 0
if uNumerator == 0
intersects = true;
end
return;
end
u = uNumerator / denominator;
t = cross(q1 - p1, s) / denominator;
if t >= 0 && t <= 1 && u >= 0 && u <= 1
intersects = true;
end
end
function path = getPath(tree, node)
path = [];
while node.parent ~= 0
path = [path; node.pos];
node = node.parent;
end
path = [path; tree.start.pos];
end
```
这段代码实现了双向RRT算法,其中`start`和`goal`表示起点和终点的坐标,`obstacles`表示障碍物的坐标,`mapSize`表示地图的尺寸,`maxIter`表示最大迭代次数,`stepSize`表示每次扩展的步长。函数返回的`path`是搜索到的路径,`tree`是搜索得到的树。
请注意,这只是一个简单的实现示例,您可能需要根据自己的具体需求进行适当的修改和优化。希望对您有帮助!
阅读全文