解释代码,semaphore Wmutex,Rmutex=1; int Rcount=0; semaphore mutex=1 void reader() /*读者进程*/ {while(true) {P(mutex); P(Rmutex); If(Rcount==0) P(wmutex); Rcount=Rcount+1 ; V(Rmutex); V(mutex); …; read;/*执行读操作*/ …; P(Rmutex); Rcount=Rcount-1; if (Rcount==0) V(wmutex); V(Rmutex);} } void writer() /*写者进程*/ {while(true) {P(mutex); P(wmutex); …; write;/*执行写操作*/ …; V(Wmutex); V(mutex); }}

时间: 2024-03-31 09:34:34 浏览: 9
这段代码是一个实现读写锁的示例。其中包含了三个信号量:Wmutex、Rmutex、mutex,以及一个计数器 Rcount。 Wmutex 的作用是确保写者进程独占访问资源,Rmutex 的作用是确保读者进程互斥访问计数器 Rcount,而 mutex 的作用是保证读写操作的互斥。 读者进程首先获取 mutex 信号量,然后获取 Rmutex 信号量,如果此时 Rcount 为 0,则需要获取 Wmutex 信号量,避免写者进程正在访问资源。然后将 Rcount 加 1,释放 Rmutex 信号量和 mutex 信号量,执行读操作,最后再次获取 Rmutex 信号量,将 Rcount 减 1,如果此时 Rcount 为 0,则释放 Wmutex 信号量,否则只需释放 Rmutex 信号量即可。 写者进程首先获取 mutex 信号量,然后获取 Wmutex 信号量,执行写操作,最后释放 Wmutex 信号量和 mutex 信号量。通过这种方式,读者进程可以并发地访问资源,而写者进程每次只能独占访问资源。
相关问题

C语言实验内容,实验内容: 综合所学知识,完成以下情境内容的同步: 一个数据对象若被多个并发进程所共享,且其中一些进程只要求读该数据对象的内容,而另一些进程则要求写操作,对此,我们把只想读的进程称为“读者”,而把要求写的进程称为“写者”。 问题描述: 读者可同时读; 读者读时,写者不可写; 写者写时,其他的读者、写者均不可进入。 要求:在主线程中创建线程分别模拟读者和写者的活动过程,实现两者的同步运行。Semaphore Wmutex,Rmutex=1,1; int Rcount=0; void reader() /*读者进程*/ { P(Rmutex); if(Rcount==0) P(Wmutex); Rcount = Rcount + 1; V(Rmutex); read; /* 执行读操作 */ P(Rmutex); Rcount = Rcount - 1; if(Rcount==0) V(Wmutex); V(Rmutex); } void writer() /*写者进程*/ { P(Wmutex); write; /* 执行写操作 */ V(Wmutex); }

这段代码使用了两个信号量Wmutex和Rmutex,以及一个计数器Rcount来实现读者-写者问题。 Rmutex是一个二元信号量,用来保护对Rcount的访问。当一个读者进程进入时,它会首先尝试获取Rmutex的锁。如果成功获取了锁,就进入了临界区,然后将Rcount的值加1。如果这是第一个读者进程,那么该进程将会尝试获取Wmutex的锁。这是因为如果有一个写者在等待,那么读者必须等待写者完成写操作后才能读取数据。读者完成读操作后,将再次尝试获取Rmutex的锁,将Rcount的值减1,如果这是最后一个读者进程,那么该进程将会释放Wmutex的锁,以便写者进程可以继续执行。 当一个写者进程进入时,它会首先尝试获取Wmutex的锁。如果成功获取了锁,就进入了临界区,然后执行写操作。写者完成写操作后,将释放Wmutex的锁。 这种实现方式可以保证读者之间互不干扰,写者和读者之间也不会产生冲突。同时,写者和写者之间也不会产生冲突,因为只有一个写者能够进入临界区。

C语言实验内容,完善这段代码。实验内容: 综合所学知识,完成以下情境内容的同步: 一个数据对象若被多个并发进程所共享,且其中一些进程只要求读该数据对象的内容,而另一些进程则要求写操作,对此,我们把只想读的进程称为“读者”,而把要求写的进程称为“写者”。 问题描述: 读者可同时读; 读者读时,写者不可写; 写者写时,其他的读者、写者均不可进入。 要求:在主线程中创建线程分别模拟读者和写者的活动过程,实现两者的同步运行。Semaphore Wmutex,Rmutex=1,1; int Rcount=0; void reader() /读者进程/ { P(Rmutex); if(Rcount==0) P(Wmutex); Rcount = Rcount + 1; V(Rmutex); read; /* 执行读操作 / P(Rmutex); Rcount = Rcount - 1; if(Rcount==0) V(Wmutex); V(Rmutex); } void writer() /写者进程/ { P(Wmutex); write; / 执行写操作 */ V(Wmutex); }

这段代码实现了读者写者问题的基本功能,但还存在一些问题。下面是完善后的代码: ``` #include <stdio.h> #include <pthread.h> #include <semaphore.h> sem_t Wmutex, Rmutex; int Rcount = 0; void *reader(void *arg) // 读者线程 { sem_wait(&Rmutex); Rcount++; if (Rcount == 1) sem_wait(&Wmutex); sem_post(&Rmutex); // 执行读操作 sem_wait(&Rmutex); Rcount--; if (Rcount == 0) sem_post(&Wmutex); sem_post(&Rmutex); } void *writer(void *arg) // 写者线程 { sem_wait(&Wmutex); // 执行写操作 sem_post(&Wmutex); } int main() { // 初始化信号量 sem_init(&Wmutex, 0, 1); sem_init(&Rmutex, 0, 1); // 创建读者线程 pthread_t readers[5]; for (int i = 0; i < 5; i++) pthread_create(&readers[i], NULL, reader, NULL); // 创建写者线程 pthread_t writers[2]; for (int i = 0; i < 2; i++) pthread_create(&writers[i], NULL, writer, NULL); // 等待线程结束 for (int i = 0; i < 5; i++) pthread_join(readers[i], NULL); for (int i = 0; i < 2; i++) pthread_join(writers[i], NULL); // 销毁信号量 sem_destroy(&Wmutex); sem_destroy(&Rmutex); return 0; } ``` 在这个代码中,我们使用了信号量来实现读者写者问题的同步。Wmutex和Rmutex分别用来保护对共享资源的访问,其中Wmutex用于互斥访问共享资源,Rmutex用于保护计数器Rcount的访问。Rcount用于记录当前正在读取共享资源的读者的数量。 读者线程首先获取Rmutex的锁,然后将Rcount的值加1。如果这是第一个读者线程,它会尝试获取Wmutex的锁,以保证没有写者在这个时候对共享资源进行写操作。读者线程完成读操作后,将再次尝试获取Rmutex的锁,将Rcount的值减1,如果这是最后一个读者线程,它将释放Wmutex的锁,以便写者线程可以继续执行。 写者线程首先获取Wmutex的锁,然后执行写操作。写者线程完成写操作后,将释放Wmutex的锁。 在主函数中,我们创建了5个读者线程和2个写者线程,并使用pthread_join函数等待线程结束。最后,我们销毁了信号量。

相关推荐

int main(void) { /*HW semaphore Clock enable*/ __HAL_RCC_HSEM_CLK_ENABLE(); /* Activate HSEM notification for Cortex-M4*/ HAL_HSEM_ActivateNotification(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_0)); /* Domain D2 goes to STOP mode (Cortex-M4 in deep-sleep) waiting for Cortex-M7 to perform system initialization (system clock config, external memory configuration.. ) */ HAL_PWREx_ClearPendingEvent(); HAL_PWREx_EnterSTOPMode(PWR_MAINREGULATOR_ON, PWR_STOPENTRY_WFE, PWR_D2_DOMAIN); /* Clear HSEM flag */ __HAL_HSEM_CLEAR_FLAG(__HAL_HSEM_SEMID_TO_MASK(HSEM_ID_0)); /* STM32H7xx HAL library initialization: - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Infinite loop */ while (1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */

优化这段代码 #include <iostream> #include <thread> #include <chrono> #include <mutex> #include <semaphore.h> using namespace std; // shared data resource int shared_data = 0; // semaphores for synchronization sem_t mutex, rw_mutex; // number of readers int num_readers = 0; // reader function void reader(int id) { while (true) { // acquire mutex to update the number of readers sem_wait(&mutex); num_readers++; if (num_readers == 1) { // if this is the first reader, acquire the rw_mutex sem_wait(&rw_mutex); } sem_post(&mutex); // read the shared data cout << "Reader " << id << " read shared data: " << shared_data << endl; // release mutex sem_wait(&mutex); num_readers--; if (num_readers == 0) { // if this is the last reader, release the rw_mutex sem_post(&rw_mutex); } sem_post(&mutex); // sleep for a random amount of time this_thread::sleep_for(chrono::milliseconds(rand() % 1000)); } } // writer function void writer(int id) { while (true) { // acquire the rw_mutex sem_wait(&rw_mutex); // write to the shared data shared_data++; cout << "Writer " << id << " wrote to shared data: " << shared_data << endl; // release the rw_mutex sem_post(&rw_mutex); // sleep for a random amount of time this_thread::sleep_for(chrono::milliseconds(rand() % 1000)); } } int main() { // initialize semaphores sem_init(&mutex, 0, 1); sem_init(&rw_mutex, 0, 1); // create reader threads thread readers[8]; for (int i = 0; i < 8; i++) { readers[i] = thread(reader, i); } // create writer threads thread writers[2]; for (int i = 0; i < 2; i++) { writers[i] = thread(writer, i); } // join threads for (int i = 0; i < 8; i++) { readers[i].join(); } for (int i = 0; i < 2; i++) { writers[i].join(); } // destroy semaphores sem_destroy(&mutex); sem_destroy(&rw_mutex); return 0; }

#include "sched.h" #include "pthread.h" #include "stdio.h" #include "stdlib.h" #include "semaphore.h" int producer(void * args); int consumer(void *args); pthread_mutex_t mutex; sem_t product; sem_t warehouse; char buffer[8][4]; int bp=0; main(int argc,char** argv) { pthread_mutex_init(&mutex,NULL); sem_init(&product,0,0); sem_init(&warehouse,0,8); int clone_flag,arg,retval; char *stack; clone_flag=CLONE_VM|CLONE_SIGHAND|CLONE_FS| CLONE_FILES; int i; for(i=0;i<2;i++) { //创建四个线程 arg = i; stack =(char*)malloc(4096); retval=clone((void*)producer,&(stack[4095]),clone_flag, (void*)&arg); stack =(char*)malloc(4096); retval=clone((void*)consumer,&(stack[4095]),clone_flag, (void*)&arg); } exit(1); } int producer(void* args) { int id = *((int*)args); int i; for(i=0;i<10;i++) { sleep(i+1); //表现线程速度差别 sem_wait(&warehouse); pthread_mutex_lock(&mutex); if(id==0) strcpy(buffer[bp],"aaa\0"); else strcpy(buffer[bp],"bbb\0"); bp++; printf("producer%d produce %s in %d\n",id,buffer[bp],bp-1); pthread_mutex_unlock(&mutex); sem_post(&product); } printf("producer%d is over!\n",id); } int consumer(void *args) { int id = *((int*)args); int i; for(i=0;i<10;i++) { sleep(10-i); //表现线程速度差别 sem_wait(&product); pthread_mutex_lock(&mutex); bp--; printf("consumer%d get %s in%d\n",id,buffer[bp],bp+1); strcpy(buffer[bp],"zzz\0"); pthread_mutex_unlock(&mutex); sem_post(&warehouse); } printf("consumer%d is over!\n",id); }这个代码在linu系统下有错误,应该如何修改

注释并详细解释以下代码#define _GNU_SOURCE #include "sched.h" #include<sys/types.h> #include<sys/syscall.h> #include<unistd.h> #include #include "stdio.h" #include "stdlib.h" #include "semaphore.h" #include "sys/wait.h" #include "string.h" int producer(void * args); int consumer(void * args); pthread_mutex_t mutex; sem_t product; sem_t warehouse; char buffer[8][4]; int bp=0; int main(int argc,char** argv){ pthread_mutex_init(&mutex,NULL);//初始化 sem_init(&product,0,0); sem_init(&warehouse,0,8); int clone_flag,arg,retval; char *stack; clone_flag=CLONE_VM|CLONE_SIGHAND|CLONE_FS| CLONE_FILES; //printf("clone_flag=%d\n",clone_flag); int i; for(i=0;i<2;i++){ //创建四个线程 arg = i; //printf("arg=%d\n",*(arg)); stack =(char*)malloc(4096); retval=clone(producer,&(stack[4095]),clone_flag,(void*)&arg); //printf("retval=%d\n",retval); stack=(char*)malloc(4096); retval=clone(consumer,&(stack[4095]),clone_flag,(void*)&arg); //printf("retval=%d\n\n",retval); usleep(1); } exit(1); } int producer(void *args){ int id = *((int*)args); int i; for(i=0;i<10;i++){ sleep(i+1); //表现线程速度差别 sem_wait(&warehouse); pthread_mutex_lock(&mutex); if(id==0) strcpy(buffer[bp],"aaa\0"); else strcpy(buffer[bp],"bbb\0"); bp++; printf("producer %d produce %s in %d\n",id,buffer[bp-1],bp-1); pthread_mutex_unlock(&mutex); sem_post(&product); } printf("producer %d is over!\n",id); exit(id); } int consumer(void *args){ int id = *((int*)args); int i; for(i=0;i<10;i++) { sleep(10-i); //表现线程速度差别 sem_wait(&product); pthread_mutex_lock(&mutex); bp--; printf("consumer %d get %s in %d\n",id,buffer[bp],bp+1); strcpy(buffer[bp],"zzz\0"); pthread_mutex_unlock(&mutex); sem_post(&warehouse); } printf("consumer %d is over!\n",id); exit(id); }

最新推荐

recommend-type

C#多线程之Semaphore用法详解

主要为大家详细介绍了C#多线程之Semaphore用法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。