用tensorflow实现用于Mask RCNN的resnext特征提取网络代码
时间: 2024-03-07 20:47:20 浏览: 106
以下是使用TensorFlow实现的Mask RCNN和ResNeXt的代码示例:
```python
import tensorflow as tf
import numpy as np
from tensorflow.contrib import slim
def bottleneck_block(inputs, filters, strides, cardinality, is_training, projection=False):
shortcut = inputs
if projection:
shortcut = slim.conv2d(shortcut, filters * 4, [1, 1], stride=strides, activation_fn=None)
x = slim.conv2d(inputs, filters, [1, 1], stride=1, activation_fn=None)
x = slim.batch_norm(x, is_training=is_training)
x = tf.nn.relu(x)
x = tf.split(x, cardinality, axis=3)
x = tf.concat([slim.conv2d(elem, filters // cardinality, [3, 3], stride=strides, activation_fn=None) for elem in x], axis=3)
x = slim.batch_norm(x, is_training=is_training)
x = tf.nn.relu(x)
x = slim.conv2d(x, filters * 4, [1, 1], stride=1, activation_fn=None)
x = slim.batch_norm(x, is_training=is_training)
output = tf.nn.relu(shortcut + x)
return output
def resnext(inputs, is_training):
with slim.arg_scope([slim.conv2d], activation_fn=None, biases_initializer=None):
with slim.arg_scope([slim.batch_norm], scale=True, center=True):
net = slim.conv2d(inputs, 64, [7, 7], stride=2, padding='SAME')
net = slim.batch_norm(net, is_training=is_training)
net = tf.nn.relu(net)
net = slim.max_pool2d(net, [3, 3], stride=2, padding='SAME')
net = bottleneck_block(net, 128, 1, 32, is_training, projection=True)
for i in range(3):
net = bottleneck_block(net, 128, 1, 32, is_training)
net = bottleneck_block(net, 256, 2, 32, is_training, projection=True)
for i in range(4):
net = bottleneck_block(net, 256, 1, 32, is_training)
net = bottleneck_block(net, 512, 2, 32, is_training, projection=True)
for i in range(6):
net = bottleneck_block(net, 512, 1, 32, is_training)
net = bottleneck_block(net, 1024, 2, 32, is_training, projection=True)
for i in range(3):
net = bottleneck_block(net, 1024, 1, 32, is_training)
return net
```
以上是使用TensorFlow实现的ResNeXt特征提取网络的代码示例,你可以参考这些代码来实现Mask RCNN中的特征提取网络。在代码中,我们使用了bottleneck_block函数来实现ResNeXt的残差块,以及resnext函数来构建整个网络。注意,这里的代码仅仅是ResNeXt的一个简化版本,如果你需要更深入的了解,建议参考相关论文和其他代码实现。
阅读全文