tensorflow下的Mask RCNN的CIOU损失函数代码
时间: 2024-05-01 17:17:15 浏览: 198
以下是tensorflow下的Mask RCNN的CIOU损失函数代码,参考自https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/model.py:
```python
def ciou_loss(gt_bbox, pred_bbox):
"""
Compute the Complete IoU (CIoU) loss between ground truth bounding boxes and predicted bounding boxes.
Arguments:
gt_bbox -- tensor of shape (batch_size, 4) representing the ground truth bounding boxes
pred_bbox -- tensor of shape (batch_size, 4) representing the predicted bounding boxes
Returns:
ciou_loss -- tensor of shape () representing the CIoU loss
"""
# Calculate IoU
iou = bbox_iou(gt_bbox, pred_bbox)
# Calculate IoU penalty term
v = ((4 / (math.pi ** 2)) * tf.square(tf.math.atan2(gt_bbox[:, 2], gt_bbox[:, 3])
- tf.math.atan2(pred_bbox[:, 2], pred_bbox[:, 3])))
alpha = v / (1 - iou + v)
# Calculate center distance term
gt_center_x = (gt_bbox[:, 0] + gt_bbox[:, 2]) / 2
gt_center_y = (gt_bbox[:, 1] + gt_bbox[:, 3]) / 2
pred_center_x = (pred_bbox[:, 0] + pred_bbox[:, 2]) / 2
pred_center_y = (pred_bbox[:, 1] + pred_bbox[:, 3]) / 2
center_distance = tf.square(gt_center_x - pred_center_x) + tf.square(gt_center_y - pred_center_y)
# Calculate width and height term
gt_width = tf.math.abs(gt_bbox[:, 2] - gt_bbox[:, 0])
gt_height = tf.math.abs(gt_bbox[:, 3] - gt_bbox[:, 1])
pred_width = tf.math.abs(pred_bbox[:, 2] - pred_bbox[:, 0])
pred_height = tf.math.abs(pred_bbox[:, 3] - pred_bbox[:, 1])
v1 = tf.math.log(gt_width / pred_width)
v2 = tf.math.log(gt_height / pred_height)
w = (v1 + v2) / 2
ciou = iou - alpha * (center_distance / (tf.square(w) + tf.square(1 - iou) - center_distance + alpha))
# Calculate CIoU loss
ciou_loss = 1 - ciou
return ciou_loss
```
阅读全文