在MASK-RCNN中使用的CIOU损失函数代码
时间: 2024-05-06 12:18:18 浏览: 120
以下是使用CIOU损失函数的MASK-RCNN的代码示例:
```python
import tensorflow as tf
from tensorflow.keras.losses import Loss
def compute_ciou(box1, box2):
# 计算两个边界框的IOU
x1, y1, w1, h1 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
x2, y2, w2, h2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
area1, area2 = w1 * h1, w2 * h2
x_min, y_min, x_max, y_max = tf.maximum(x1 - w1 / 2, x2 - w2 / 2), \
tf.maximum(y1 - h1 / 2, y2 - h2 / 2), \
tf.minimum(x1 + w1 / 2, x2 + w2 / 2), \
tf.minimum(y1 + h1 / 2, y2 + h2 / 2)
intersection, union = tf.maximum((x_max - x_min), 0) * tf.maximum((y_max - y_min), 0), \
tf.maximum((area1 + area2 - intersection), 1e-7)
iou = intersection / union
# 计算两个边界框的中心点距离
center_distance = tf.square(x1 - x2) + tf.square(y1 - y2)
# 计算两个边界框的对角线长度平方
box1_diag, box2_diag = tf.square(w1) + tf.square(h1), tf.square(w2) + tf.square(h2)
# 计算CIOU
v = 4 * tf.square(tf.math.atan2(w2, h2) - tf.math.atan2(w1, h1)) / (tf.math.pi ** 2)
with tf.device('/cpu:0'):
alpha = v / (1 - iou + v)
ciou = iou - (center_distance / box2_diag) - alpha * (1 - union / (area1 + area2 - union))
return ciou
class CIOULoss(Loss):
def __init__(self, weight=1.0, **kwargs):
super(CIOULoss, self).__init__(**kwargs)
self.weight = weight
def call(self, y_true, y_pred):
box1, box2 = y_true, y_pred
ciou = tf.clip_by_value(compute_ciou(box1, box2), clip_value_min=-1.0, clip_value_max=1.0)
loss = 1 - ciou
loss = tf.reduce_mean(loss) * self.weight
return loss
```
在这里,我们定义了一个`compute_ciou`函数来计算两个边界框的CIOU值,并在`CIOULoss`类中使用该函数来计算CIOU损失。最后,我们将损失乘以权重作为最终的损失。
阅读全文