写一个Python代码用GCN算法来实现短文本分类
时间: 2024-01-27 11:03:37 浏览: 139
好的,以下是一个简单的Python代码,用GCN算法来实现短文本分类:
首先,我们需要导入必要的库和模块:
```python
import numpy as np
import tensorflow as tf
import tensorflow.keras.layers as layers
from tensorflow.keras import Model
```
然后,我们定义一个Graph Convolutional Network(GCN)模型:
```python
class GCN(Model):
def __init__(self, input_dim, hidden_dim, output_dim):
super(GCN, self).__init__()
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.dense1 = layers.Dense(hidden_dim, activation='relu')
self.dense2 = layers.Dense(output_dim, activation='softmax')
self.graph_convolution = layers.Dense(hidden_dim, activation='relu')
self.dropout = layers.Dropout(0.5)
self.batch_norm = layers.BatchNormalization()
def call(self, inputs):
x, A = inputs
x = self.graph_convolution(x)
x = tf.matmul(A, x)
x = self.batch_norm(x)
x = self.dense1(x)
x = self.dropout(x)
x = self.dense2(x)
return x
```
这是一个非常简单的GCN模型,它由两个密集层和一个图卷积层组成。我们使用ReLU激活函数来加快训练速度,并使用Dropout和BatchNormalization来防止过拟合。我们还使用softmax激活函数来获得输出概率。
接下来,我们定义一个函数来准备数据:
```python
def prepare_data(X, y, max_words, max_nodes):
X = tf.keras.preprocessing.sequence.pad_sequences(X, maxlen=max_words)
A = np.zeros((X.shape[0], max_nodes, max_nodes))
for i in range(X.shape[0]):
for j in range(min(max_nodes, len(X[i]))):
for k in range(min(max_nodes, len(X[i]))):
if j != k:
A[i][j][k] = 1.0 / (len(X[i]) - 1)
y = tf.keras.utils.to_categorical(y)
return X, A, y
```
这个函数将我们的文本数据转换为适合输入到GCN模型的格式。我们使用pad_sequences来将所有文本序列填充到相同的长度,并创建一个邻接矩阵表示单词之间的关系。
最后,我们定义一个训练函数:
```python
def train(X_train, y_train, X_test, y_test, max_words, max_nodes, epochs):
model = GCN(hidden_dim=64, output_dim=y_train.shape[1], input_dim=X_train.shape[2])
optimizer = tf.keras.optimizers.Adam()
loss_fn = tf.keras.losses.CategoricalCrossentropy()
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')
for epoch in range(epochs):
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
X_train, A_train, y_train = prepare_data(X_train, y_train, max_words, max_nodes)
X_test, A_test, y_test = prepare_data(X_test, y_test, max_words, max_nodes)
with tf.GradientTape() as tape:
y_pred_train = model([X_train, A_train], training=True)
loss_train = loss_fn(y_train, y_pred_train)
gradients = tape.gradient(loss_train, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
y_pred_test = model([X_test, A_test], training=False)
loss_test = loss_fn(y_test, y_pred_test)
train_loss(loss_train)
train_accuracy(y_train, y_pred_train)
test_loss(loss_test)
test_accuracy(y_test, y_pred_test)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch+1, train_loss.result(), train_accuracy.result()*100, test_loss.result(), test_accuracy.result()*100))
```
该函数使用Adam优化器和分类交叉熵损失函数来训练模型。我们还使用分类准确性作为评估指标。每个epoch结束时,我们会输出训练和测试的损失和准确性。
现在,我们可以使用这些函数来训练我们的GCN模型了。
阅读全文