python实现基于GCN嵌入的多目标优化中文旅游景点推荐的小型示例代码
时间: 2023-12-15 20:07:13 浏览: 298
基于CNN+RNN+GCN+BERT的中文文本分类Python实现源码(高分项目)
以下是一个基于GCN嵌入的多目标优化中文旅游景点推荐的小型示例代码:
```python
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers
# 定义图卷积层
class GCN(layers.Layer):
def __init__(self, output_dim):
super(GCN, self).__init__()
self.output_dim = output_dim
def build(self, input_shape):
self.kernel = self.add_weight(shape=(input_shape[1], self.output_dim), initializer='glorot_uniform', trainable=True)
def call(self, inputs):
adj_matrix = inputs[0] # 邻接矩阵
node_features = inputs[1] # 节点特征矩阵
# 计算度矩阵D和规范化邻接矩阵D^-1 * A
D = tf.linalg.diag(tf.reduce_sum(adj_matrix, axis=1))
normalized_adj_matrix = tf.matmul(tf.linalg.inv(D), adj_matrix)
# 计算GCN嵌入
gcn_embedding = tf.matmul(normalized_adj_matrix, node_features)
gcn_embedding = tf.matmul(gcn_embedding, self.kernel)
gcn_embedding = tf.nn.relu(gcn_embedding)
return gcn_embedding
# 定义多目标优化模型
class MultiObjectiveModel(tf.keras.Model):
def __init__(self, num_nodes, num_categories, num_features, num_hidden_units):
super(MultiObjectiveModel, self).__init__()
self.num_nodes = num_nodes
self.num_categories = num_categories
self.num_features = num_features
self.num_hidden_units = num_hidden_units
# 定义GCN层和分类器
self.gcn1 = GCN(num_hidden_units)
self.gcn2 = GCN(num_hidden_units)
self.classifier = layers.Dense(num_categories, activation='softmax')
def call(self, inputs):
adj_matrix = inputs[0]
node_features = inputs[1]
target_categories = inputs[2]
# 计算GCN嵌入
gcn_embedding1 = self.gcn1([adj_matrix, node_features])
gcn_embedding2 = self.gcn2([adj_matrix, node_features])
# 计算景点推荐得分
scores = tf.matmul(gcn_embedding1, tf.transpose(gcn_embedding2))
# 计算分类结果
category_probs = self.classifier(gcn_embedding1)
# 计算多目标损失
mse_loss = tf.keras.losses.mean_squared_error(target_categories, scores)
ce_loss = tf.keras.losses.categorical_crossentropy(target_categories, category_probs)
total_loss = mse_loss + ce_loss
return total_loss
# 构建模型并训练
num_nodes = 100
num_categories = 5
num_features = 10
num_hidden_units = 16
adj_matrix = np.random.randint(2, size=(num_nodes, num_nodes))
node_features = np.random.randn(num_nodes, num_features)
target_categories = np.random.randn(num_nodes, num_categories)
model = MultiObjectiveModel(num_nodes, num_categories, num_features, num_hidden_units)
model.compile(optimizer='adam', loss=None)
model.fit([adj_matrix, node_features, target_categories], epochs=10)
```
这个示例代码中,我们定义了一个包含两个GCN层和一个分类器的多目标优化模型,其中GCN层用于计算节点的嵌入,分类器用于预测节点的类别,同时模型还考虑了景点推荐得分的损失。在训练过程中,我们输入了邻接矩阵、节点特征矩阵和目标类别矩阵,并使用Adam优化器进行模型训练。
阅读全文