python实现输入实体特征属性和实体关系三元组,利用GCN嵌入方法输出为向量示例代码
时间: 2024-02-17 11:04:12 浏览: 94
基于python实现图嵌入的两种方法GCN与Deepwalk总结对比
这里是一个简单的示例,演示如何使用GCN嵌入方法将输入的实体特征属性和实体关系三元组转换为向量:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class GCNLayer(nn.Module):
def __init__(self, in_features, out_features):
super(GCNLayer, self).__init__()
self.linear = nn.Linear(in_features, out_features)
def forward(self, adj_matrix, node_features):
# 计算度矩阵
deg_matrix = torch.sum(adj_matrix, dim=1)
# 根据度矩阵归一化邻接矩阵
norm_adj_matrix = adj_matrix / torch.sqrt(deg_matrix.unsqueeze(1)) / torch.sqrt(deg_matrix.unsqueeze(0))
# 执行GCN层的线性变换
out = self.linear(norm_adj_matrix @ node_features)
# 应用ReLU激活函数
out = F.relu(out)
return out
class EntityGCN(nn.Module):
def __init__(self, num_entities, num_relations, entity_feature_size, hidden_size, output_size):
super(EntityGCN, self).__init__()
# 定义实体和关系的嵌入
self.entity_embedding = nn.Embedding(num_entities, entity_feature_size)
self.relation_embedding = nn.Embedding(num_relations, hidden_size)
# 定义两层GCN
self.layer1 = GCNLayer(entity_feature_size + hidden_size * 2, hidden_size)
self.layer2 = GCNLayer(hidden_size, output_size)
def forward(self, entity_features, triples):
# 获取实体和关系的嵌入
entity_embed = self.entity_embedding(entity_features)
relation_embed = self.relation_embedding(triples[:, 1])
# 构建邻接矩阵
num_entities = entity_features.max() + 1
adj_matrix = torch.zeros(num_entities, num_entities)
adj_matrix[triples[:, 0], triples[:, 2]] = 1
# 将邻接矩阵转换为稀疏张量
adj_matrix = adj_matrix.sparse_mask()
# 计算头实体和尾实体的嵌入
head_embed = entity_embed[triples[:, 0]]
tail_embed = entity_embed[triples[:, 2]]
# 将实体和关系的嵌入连接在一起
node_features = torch.cat([entity_embed, head_embed, tail_embed, relation_embed], dim=1)
# 执行两层GCN
out = self.layer1(adj_matrix, node_features)
out = self.layer2(adj_matrix, out)
return out
# 创建示例数据
num_entities = 5
num_relations = 2
entity_feature_size = 3
hidden_size = 4
output_size = 2
entity_features = torch.LongTensor([0, 1, 2, 3, 4])
triples = torch.LongTensor([[0, 0, 1], [1, 1, 2], [2, 0, 3], [3, 1, 4]])
# 创建模型并进行前向传递
model = EntityGCN(num_entities, num_relations, entity_feature_size, hidden_size, output_size)
output = model(entity_features, triples)
print(output)
```
在这个示例中,我们创建了一个EntityGCN模型,并使用示例数据进行前向传递。输出是一个大小为[5, 2]的张量,表示每个实体的嵌入向量。注意,在这个示例中,我们只使用了一个包含四个三元组的小型数据集,实际应用中可能需要使用更大的数据集来训练模型。
阅读全文