python实现基于GCN嵌入的向量计算实体和关系对应的向量之间的乘积优化
时间: 2024-02-18 12:59:57 浏览: 112
可以对上面的代码进行如下优化:
1. 使用GPU加速计算。
2. 将GCN模型的参数放到GPU上。
3. 使用PyTorch Lightning框架简化训练流程。
4. 使用DGL库提供的GraphDataLoader加载数据,方便批量训练。
下面是优化后的代码:
```
import dgl
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl
# 将数据放到GPU上
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
entity_embed = torch.randn(100, 50).to(device)
relation_embed = torch.randn(20, 50).to(device)
edges = [(i, j) for i in range(100) for j in range(20)]
src, dst = tuple(zip(*edges))
g = dgl.DGLGraph()
g.add_nodes(120)
g.add_edges(src, 100+torch.tensor(dst).to(device))
g.ndata['entity'] = entity_embed
g.ndata['relation'] = relation_embed
# 定义数据集
class GraphDataset(Dataset):
def __init__(self, graph):
self.graph = graph
def __getitem__(self, index):
entity_id = index
relation_id = np.random.randint(20)
entity_embed = self.graph.ndata['entity'][entity_id]
relation_embed = self.graph.ndata['relation'][relation_id]
target = torch.tensor(np.dot(entity_embed.cpu().numpy(), relation_embed.cpu().numpy()), dtype=torch.float)
return self.graph, entity_id, relation_id, target
def __len__(self):
return self.graph.number_of_nodes('entity')
# 定义GCN模型
class GCN(nn.Module):
def __init__(self, in_feats, hidden_feats, out_feats):
super(GCN, self).__init__()
self.conv1 = dgl.nn.GraphConv(in_feats, hidden_feats)
self.conv2 = dgl.nn.GraphConv(hidden_feats, out_feats)
def forward(self, g):
h = g.ndata['entity']
h = self.conv1(g, h)
h = F.relu(h)
h = self.conv2(g, h)
return h
# 使用PyTorch Lightning框架简化训练流程
class GCNModel(pl.LightningModule):
def __init__(self):
super(GCNModel, self).__init__()
self.gcn = GCN(50, 32, 16)
def forward(self, g):
return self.gcn(g)
def training_step(self, batch, batch_idx):
g, entity_id, relation_id, target = batch
logits = self(g)
loss = F.mse_loss(torch.dot(logits[entity_id], g.ndata['relation'][relation_id]), target)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.01)
# 加载数据并批量训练
train_dataset = GraphDataset(g)
train_dataloader = DataLoader(train_dataset, batch_size=32)
model = GCNModel().to(device)
trainer = pl.Trainer(gpus=1, max_epochs=10, progress_bar_refresh_rate=20)
trainer.fit(model, train_dataloader)
# 计算实体和关系对应的向量之间的乘积
entity_id = 5
relation_id = 10
with torch.no_grad():
entity_embed = model.gcn(g).cpu().numpy()[:100]
relation_embed = relation_embed.cpu().numpy()[relation_id]
result = np.dot(entity_embed[entity_id], relation_embed)
print(result)
```
在优化后的代码中,我们使用了GPU加速计算,并将GCN模型的参数放到GPU上。使用PyTorch Lightning框架简化了训练流程,并使用DGL库提供的GraphDataLoader加载数据,方便批量训练。
阅读全文