def Normalization(data): data_mean = data.mean() data_std = data.std() data = data - data_mean data = data / data_std return data

时间: 2023-10-08 10:09:40 浏览: 57
这段代码实现了数据标准化(Normalization)的功能,具体解释如下: - 输入参数 data 是一个 numpy 数组,用于存储需要进行标准化的数据。 - data_mean = data.mean():计算数据的均值。 - data_std = data.std():计算数据的标准差。 - data = data - data_mean:将数据减去均值,使得数据的中心在 0 附近。 - data = data / data_std:将数据除以标准差,使得数据的范围在 -1 到 1 之间。 - 返回结果数据 data,它的每个元素都是标准化后的数值。
相关问题

arr0 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) arr3 = np.array(input("请输入连续24个月的配件销售数据,元素之间用空格隔开:").split(), dtype=float) data_array = np.vstack((arr1, arr3)) data_matrix = data_array.T data = pd.DataFrame(data_matrix, columns=['month', 'sales']) sales = data['sales'].values.astype(np.float32) sales_mean = sales.mean() sales_std = sales.std() sales = abs(sales - sales_mean) / sales_std train_data = sales[:-1] test_data = sales[-12:] def create_model(): model = tf.keras.Sequential() model.add(layers.Input(shape=(11, 1))) model.add(layers.Conv1D(filters=32, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=64, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=128, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=256, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Conv1D(filters=512, kernel_size=2, padding='causal', activation='relu')) model.add(layers.BatchNormalization()) model.add(layers.Dense(1, activation='linear')) return model model = create_model() BATCH_SIZE = 16 BUFFER_SIZE = 100 train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.window(11, shift=1, drop_remainder=True) train_dataset = train_dataset.flat_map(lambda window: window.batch(11)) train_dataset = train_dataset.map(lambda window: (window[:-1], window[-1:])) train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(1) model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mse') history = model.fit(train_dataset, epochs=100, verbose=0) test_input = test_data[:-1] test_input = np.reshape(test_input, (1, 11, 1)) predicted_sales = model.predict(test_input)[0][0] * sales_std + sales_mean test_prediction = model.predict(test_input) y_test=test_data[1:12] y_pred=test_prediction y_pred = test_prediction.ravel() print("预测下一个月的销量为:", predicted_sales),如何将以下代码稍作修改插入到上面的最后,def comput_acc(real,predict,level): num_error=0 for i in range(len(real)): if abs(real[i]-predict[i])/real[i]>level: num_error+=1 return 1-num_error/len(real) a=np.array(test_data[label]) real_y=a real_predict=test_predict print("置信水平:{},预测准确率:{}".format(0.2,round(comput_acc(real_y,real_predict,0.2)* 100,2)),"%")

你可以在最后添加如下代码实现 `comput_acc()` 函数的功能: ``` label = 0 # 定义标签 a = np.array(test_data[label]) # 获取测试数据的标签列 real_y = a[1:] # 实际销售数据 real_predict = y_pred[:-1] # 预测销售数据 print("置信水平:{},预测准确率:{}".format(0.2, round(comput_acc(real_y, real_predict, 0.2) * 100, 2)), "%") ``` 这段代码的作用是,首先定义标签为 0,即选取测试数据中的第一列数据(即销售数据)。然后,使用 `np.array()` 函数将该列数据转换为 numpy 数组 `a`。接着,将 `a` 中的第二个元素到最后一个元素赋值给 `real_y`,这里是因为真实销售数据的第一个元素已经作为测试数据输入了模型,所以预测值中不包含该元素。然后,将 `y_pred` 中的第一个元素到倒数第二个元素赋值给 `real_predict`,这是因为预测值中的最后一个元素已经与真实值的最后一个元素相对应。最后,调用 `comput_acc()` 函数计算预测准确率,并将结果打印输出。

import matplotlib.pyplot as plt import pandas as pd from keras.models import Sequential from keras import layers from keras import regularizers import os import keras import keras.backend as K import numpy as np from keras.callbacks import LearningRateScheduler data = "data.csv" df = pd.read_csv(data, header=0, index_col=0) df1 = df.drop(["y"], axis=1) lbls = df["y"].values - 1 wave = np.zeros((11500, 178)) z = 0 for index, row in df1.iterrows(): wave[z, :] = row z+=1 mean = wave.mean(axis=0) wave -= mean std = wave.std(axis=0) wave /= std def one_hot(y): lbl = np.zeros(5) lbl[y] = 1 return lbl target = [] for value in lbls: target.append(one_hot(value)) target = np.array(target) wave = np.expand_dims(wave, axis=-1) model = Sequential() model.add(layers.Conv1D(64, 15, strides=2, input_shape=(178, 1), use_bias=False)) model.add(layers.ReLU()) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.Dropout(0.5)) model.add(layers.Conv1D(64, 3)) model.add(layers.Conv1D(64, 3, strides=2)) model.add(layers.BatchNormalization()) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(64, dropout=0.5, return_sequences=True)) model.add(layers.LSTM(32)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(5, activation="softmax")) model.summary() save_path = './keras_model3.h5' if os.path.isfile(save_path): model.load_weights(save_path) print('reloaded.') adam = keras.optimizers.adam() model.compile(optimizer=adam, loss="categorical_crossentropy", metrics=["acc"]) # 计算学习率 def lr_scheduler(epoch): # 每隔100个epoch,学习率减小为原来的0.5 if epoch % 100 == 0 and epoch != 0: lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, lr * 0.5) print("lr changed to {}".format(lr * 0.5)) return K.get_value(model.optimizer.lr) lrate = LearningRateScheduler(lr_scheduler) history = model.fit(wave, target, epochs=400, batch_size=128, validation_split=0.2, verbose=2, callbacks=[lrate]) model.save_weights(save_path) print(history.history.keys()) # summarize history for accuracy plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() # summarize history for loss plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()

这段代码是用来训练一个深度学习模型的代码,使用了Keras和Tensorflow进行模型的搭建、训练和保存。该模型包含了卷积层、批量归一化层、Dropout层、LSTM层和全连接层,并且最终使用softmax激活函数得到预测的类别。通过对数据进行处理,将输入数据按照一定的规范进行规范化,将标签转换成了一个one-hot编码的形式。最后,该代码通过在数据上进行训练,得到一个可以用来做预测的深度学习模型。

相关推荐

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。