给出一个蚁群算法的旅行商Python
时间: 2023-06-12 17:04:13 浏览: 90
以下是一个蚁群算法的旅行商Python代码示例:
```
import random
import math
class AntColony:
def __init__(self, distance_matrix, num_ants, num_iterations, alpha, beta, evaporation_rate, q):
self.distance_matrix = distance_matrix
self.num_ants = num_ants
self.num_iterations = num_iterations
self.alpha = alpha
self.beta = beta
self.evaporation_rate = evaporation_rate
self.q = q
self.num_cities = len(distance_matrix)
self.pheromone_matrix = [[1 / (self.num_cities * self.num_cities) for j in range(self.num_cities)] for i in range(self.num_cities)]
def run(self):
best_path = []
best_distance = math.inf
for i in range(self.num_iterations):
paths = self.generate_paths()
distances = [self.get_distance(path) for path in paths]
for ant, path in enumerate(paths):
if distances[ant] < best_distance:
best_distance = distances[ant]
best_path = path
self.update_pheromone(path, distances[ant])
self.evaporate_pheromone()
return best_path, best_distance
def generate_paths(self):
paths = []
for ant in range(self.num_ants):
path = [random.randint(0, self.num_cities - 1)]
while len(path) < self.num_cities:
next_city = self.choose_next_city(path)
path.append(next_city)
paths.append(path)
return paths
def choose_next_city(self, path):
current_city = path[-1]
unvisited_cities = set(range(self.num_cities)) - set(path)
if not unvisited_cities:
return path[0]
probabilities = []
for city in unvisited_cities:
pheromone = self.pheromone_matrix[current_city][city]
distance = self.distance_matrix[current_city][city]
probability = math.pow(pheromone, self.alpha) * math.pow(1 / distance, self.beta)
probabilities.append((city, probability))
total_probability = sum(probability for _, probability in probabilities)
normalized_probabilities = [(city, probability / total_probability) for city, probability in probabilities]
next_city = random.choices([city for city, _ in normalized_probabilities], [probability for _, probability in normalized_probabilities])[0]
return next_city
def get_distance(self, path):
distance = 0
for i in range(self.num_cities - 1):
distance += self.distance_matrix[path[i]][path[i + 1]]
distance += self.distance_matrix[path[-1]][path[0]]
return distance
def update_pheromone(self, path, distance):
pheromone_deposit = self.q / distance
for i in range(self.num_cities - 1):
current_city, next_city = path[i], path[i + 1]
self.pheromone_matrix[current_city][next_city] += pheromone_deposit
self.pheromone_matrix[next_city][current_city] += pheromone_deposit
start_city, end_city = path[-1], path[0]
self.pheromone_matrix[start_city][end_city] += pheromone_deposit
self.pheromone_matrix[end_city][start_city] += pheromone_deposit
def evaporate_pheromone(self):
for i in range(self.num_cities):
for j in range(self.num_cities):
self.pheromone_matrix[i][j] *= (1 - self.evaporation_rate)
```
这个类可以用以下方式来运行:
```
distance_matrix = [[0, 2, 9, 10],
[1, 0, 6, 4],
[15, 7, 0, 8],
[6, 3, 12, 0]]
colony = AntColony(distance_matrix, num_ants=10, num_iterations=100, alpha=1, beta=2, evaporation_rate=0.5, q=100)
best_path, best_distance = colony.run()
print('Best path:', best_path)
print('Best distance:', best_distance)
```
这里的`distance_matrix`是一个二维列表,包含每个城市之间的距离。这里的示例包含了4个城市,但这个算法可以适用于任意数量的城市。其他参数中,`num_ants`表示蚂蚁的数量,`num_iterations`表示迭代次数,`alpha`和`beta`表示控制信息素和距离之间权重的参数,`evaporation_rate`表示信息素蒸发率,`q`表示信息素沉积强度。最后,`run()`函数返回最佳路径和最佳距离。
阅读全文