openMP 实现knn
时间: 2023-12-17 17:20:31 浏览: 119
OpenMP 是一种用于多线程编程的API,可以用于并行化各种类型的算法。下面是使用OpenMP并行化kNN算法的示例代码:
```c++
#include <iostream>
#include <cmath>
#include <omp.h>
using namespace std;
const int k = 3; // k值
// 计算欧几里得距离
float euclidean_distance(float a[], float b[], int dim) {
float dist = 0.0;
for (int i = 0; i < dim; i++) {
dist += pow(a[i] - b[i], 2);
}
return sqrt(dist);
}
int main() {
// 样本数据
float samples[10][3] = {
{2.0, 3.0, 1.0},
{4.0, 2.0, 9.0},
{3.0, 1.0, 5.0},
{6.0, 7.0, 3.0},
{9.0, 8.0, 4.0},
{5.0, 1.0, 2.0},
{8.0, 3.0, 6.0},
{1.0, 4.0, 7.0},
{7.0, 8.0, 9.0},
{4.0, 5.0, 8.0}
};
// 查询点
float query_point[3] = {4.5, 2.5, 3.5};
int num_samples = sizeof(samples) / sizeof(samples[0]);
float distances[num_samples];
#pragma omp parallel for
for (int i = 0; i < num_samples; i++) {
distances[i] = euclidean_distance(samples[i], query_point, 3);
}
int indices[k];
for (int i = 0; i < k; i++) {
float min_dist = INFINITY;
int min_index = -1;
#pragma omp parallel for
for (int j = 0; j < num_samples; j++) {
if (distances[j] < min_dist) {
bool already_selected = false;
for (int m = 0; m < i; m++) {
if (indices[m] == j) {
already_selected = true;
break;
}
}
if (!already_selected) {
min_dist = distances[j];
min_index = j;
}
}
}
indices[i] = min_index;
}
cout << "The " << k << " nearest neighbors are: ";
for (int i = 0; i < k; i++) {
cout << indices[i] << " ";
}
cout << endl;
return 0;
}
```
在上面的代码中,我们使用了 `#pragma omp parallel for` 来标记需要并行化的循环。在第一个循环中,我们计算了每个样本与查询点之间的距离。在第二个循环中,我们找到了距离查询点最近的k个样本。这两个循环都可以使用OpenMP并行化,从而提高算法的执行效率。
阅读全文