STM32配置GPIO下拉输入

时间: 2024-05-07 21:20:03 浏览: 13
要配置STM32 GPIO为下拉输入,可以按照以下步骤: 1. 打开RCC时钟使能GPIO端口,例如要使能GPIOA,可以使用以下代码: ``` RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); ``` 2. 配置GPIO口为输入模式,例如要配置PA0为输入口,可以使用以下代码: ``` GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_Init(GPIOA, &GPIO_InitStructure); ``` 3. 配置GPIO口为下拉输入模式,例如要配置PA0为下拉输入,可以使用以下代码: ``` GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_Init(GPIOA, &GPIO_InitStructure); ``` 在上述代码中,`GPIO_PuPd_DOWN`表示选择GPIO口为下拉输入模式。如果需要选择上拉输入模式,可以使用`GPIO_PuPd_UP`。
相关问题

stm32cubemx gpio模拟输入

在STM32CubeMX中,模拟输入可以通过GPIO的模式设置来实现。具体步骤如下: 1. 打开STM32CubeMX软件,选择对应的芯片型号。 2. 在Pinout & Configuration选项卡中,选择需要配置的GPIO引脚。 3. 在右侧的Mode下拉菜单中选择Analog模式。 4. 在Configuration下拉菜单中选择Analog模式对应的功能,例如ADC或DAC等。 5. 根据需要进行其他配置,例如上拉/下拉电阻、输出类型等。 6. 点击Generate Code按钮生成代码。

配置一个STM32 HAL GPIO输入

1. 首先需要在CubeMX中配置GPIO口的模式和引脚,选择输入模式,根据实际需求选择上拉、下拉或无上下拉电阻等。 2. 在代码中需要包含stm32f4xx_hal.h头文件,定义GPIO_InitTypeDef结构体并初始化。 3. 使用HAL库函数HAL_GPIO_Init初始化GPIO口。 4. 使用HAL库函数HAL_GPIO_ReadPin读取GPIO口的值。 下面是一个示例代码: ``` #include "stm32f4xx_hal.h" int main(void) { HAL_Init(); GPIO_InitTypeDef GPIO_InitStruct; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); while (1) { if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_RESET) { // do something } } } ``` 在以上代码中,PA0被配置为输入模式,上拉电阻使得默认状态下GPIO口为高电平,当PA0被按下时,GPIO口变为低电平,触发if语句内部的操作。

相关推荐

最新推荐

recommend-type

STM32中GPIO的8种工作模式

GPIO_Mode_AIN 模拟输入、GPIO_Mode_IN_FLOATING 浮空输入、GPIO_Mode_IPD 下拉输入 、GPIO_Mode_IPU 上拉输入 、GPIO_Mode_Out_OD 开漏输出、GPIO_Mode_Out_PP 推挽输出、GPIO_Mode_AF_OD 复用开漏输出、GPIO_Mode_...
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。