train.mean(axis=(0,1,3), keepdims=True)
时间: 2023-10-16 09:09:31 浏览: 98
This code calculates the mean of a 4-dimensional numpy array "train" along the 0th, 1st, and 3rd axes while keeping the dimensions of the original array using the "keepdims=True" argument.
In other words, it calculates the mean value for each element along the 2nd axis, which is not included in the calculation. The resulting array will have the same number of dimensions as the original array, but the dimensions along the 0th, 1st, and 3rd axes will be reduced to size 1.
This operation is useful for reducing the dimensionality of an array while preserving important statistical information.
相关问题
#预测因子(海温) #nino3.4赤道东太平洋(190-220,-5-5) a22=sst_djf.sel(lon=slice(190,220),lat=slice(5,-5)).mean(axis=1).mean(axis=1) a2=(a22-a22.mean())/a22.std() #赤道印度洋(50-80,-5-5) a33=sst_djf.sel(lon=slice(50,100),lat=slice(5,-5)).mean(axis=1).mean(axis=1) a3=(a33-a33.mean())/a33.std() #预测因子(环流场) #南欧(30-40,35-45) b11=hgt_djf.sel(lon=slice(30,40),lat=slice(45,35)).mean(axis=1).mean(axis=1) b1=(b11-b11.mean())/b11.std() #太平洋副高(120-180,-10-10) b22=hgt_djf.sel(lon=slice(120,180),lat=slice(10,-10)).mean(axis=1).mean(axis=1) b2=(b22-b22.mean())/b22.std() #印度洋(60-80,-10-10) b33=hgt_djf.sel(lon=slice(60,80),lat=slice(10,-10)).mean(axis=1).mean(axis=1) b3=(b33-b33.mean())/b33.std() x=np.vstack([(a2,a3,b1,b2,b3)]).T x2=np.vstack([(a2,b1)]).T y=pre_standard #多元线性回归 res=np.linalg.lstsq(x,y,rcond=None) n=res[0] ##各项系数 y_fit=(n.T*x).sum(axis=1) #拟合数据 res2=np.linalg.lstsq(x2,y,rcond=None) n2=res2[0] ##各项系数 y_fit2=(n2.T*x2).sum(axis=1) #拟合数据 #可视化 time=np.arange(1961,2017,1) fig = plt.figure(figsize=[16, 5]) ax = fig.add_subplot() ax.plot(time, y,marker='o', color='gray', markersize=5) ax.plot(time, y_fit,marker='*', color='b', markersize=5) ax.plot(time, y_fit2,marker='^', color='r', markersize=5) ax.set_title('model',fontsize=20,fontweight='bold') ax.set_xlabel('Time') ax.set_ylabel('Pre') plt.legend(['Source data','Fitted1','Fitted2'],frameon=False,loc='best') plt.show()选做剔除一年的交叉检验,独立试报
好的,我理解你的意思是要对这段代码进行交叉验证和独立测试,以评估模型的性能。交叉验证可以用来评估模型的泛化能力,独立测试可以用来测试模型的预测能力。以下是一个简单的交叉验证和独立测试的示例代码,仅供参考:
交叉验证:
```python
from sklearn.model_selection import KFold
# 将数据集分成 5 份,进行 5 折交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=1)
# 存储每次交叉验证的评估结果
scores = []
for train_idx, test_idx in kf.split(x):
# 划分训练集和验证集
x_train, x_valid = x[train_idx], x[test_idx]
y_train, y_valid = y[train_idx], y[test_idx]
# 训练模型
res = np.linalg.lstsq(x_train, y_train, rcond=None)
n = res[0]
# 在验证集上进行预测,计算评估指标
y_pred = (n.T * x_valid).sum(axis=1)
score = np.sqrt(((y_pred - y_valid) ** 2).mean())
scores.append(score)
# 计算交叉验证的平均评估指标
mean_score = np.mean(scores)
print('交叉验证 RMSE:', mean_score)
```
独立测试:
```python
# 划分训练集和测试集
train_size = 0.8
n_samples = x.shape[0]
n_train = int(train_size * n_samples)
x_train, x_test = x[:n_train], x[n_train:]
y_train, y_test = y[:n_train], y[n_train:]
# 训练模型
res = np.linalg.lstsq(x_train, y_train, rcond=None)
n = res[0]
# 在测试集上进行预测,计算评估指标
y_pred = (n.T * x_test).sum(axis=1)
test_score = np.sqrt(((y_pred - y_test) ** 2).mean())
print('独立测试 RMSE:', test_score)
```
需要注意的是,这里使用的是简单的线性回归模型,可能存在欠拟合或过拟合的问题,需要根据实际情况进行调整。另外,数据预处理和特征工程也是影响模型性能的重要因素,需要进行合理的处理。
class RNN: def init(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化参数 self.Wxh = np.random.randn(hidden_size, input_size) * 0.01 # 输入层到隐藏层的权重矩阵 self.Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # 隐藏层到隐藏层的权重矩阵 self.Why = np.random.randn(output_size, hidden_size) * 0.01 # 隐藏层到输出层的权重矩阵 self.bh = np.zeros((hidden_size, 1)) # 隐藏层偏置 self.by = np.zeros((output_size, 1)) # 输出层偏置 # 初始化隐藏状态 self.h = np.zeros((hidden_size, 1)) def forward(self, x): # 更新隐藏状态 self.h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, self.h) + self.bh) # 计算输出 y = np.dot(self.Why, self.h) + self.by # 返回输出和隐藏状态 return y, self.h def backward(self, x, y, target, learning_rate): # 计算输出误差 dy = y - target # 计算隐藏状态误差 dh = np.dot(self.Why.T, dy) * (1 - self.h ** 2) # 计算权重和偏置的梯度 dWhy = np.dot(dy, self.h.T) dby = np.sum(dy, axis=1, keepdims=True) dWxh = np.dot(dh, x.T) dWhh = np.dot(dh, self.h.T) dbh = np.sum(dh, axis=1, keepdims=True) # 更新权重和偏置 self.Why -= learning_rate * dWhy self.by -= learning_rate * dby self.Wxh -= learning_rate * dWxh self.Whh -= learning_rate * dWhh self.bh -= learning_rate * dbh 帮写一下用online_shopping_10_cats数据集训练以上模型的代码和步骤
好的,以下是使用online_shopping_10_cats数据集训练以上模型的代码和步骤:
1. 数据预处理
首先,需要对数据集进行预处理,将每个商品评论转换为数字序列,并将其填充到相同的长度,以便于输入到模型中。可以使用Python中的keras.preprocessing.text.Tokenizer()类来实现这一步骤。代码如下:
```
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# 读取数据集文件
with open('reviews.txt', 'r', encoding='utf8') as f:
reviews = f.readlines()
# 将每个评论转换为数字序列
tokenizer = Tokenizer()
tokenizer.fit_on_texts(reviews)
sequences = tokenizer.texts_to_sequences(reviews)
# 将序列填充到相同的长度
max_len = 100 # 设定最大长度为100
sequences = pad_sequences(sequences, maxlen=max_len, padding='post')
```
2. 划分训练集和测试集
将数据集划分为训练集和测试集,以便于在训练过程中进行模型评估。可以使用sklearn.model_selection中的train_test_split()函数来实现这一步骤。代码如下:
```
from sklearn.model_selection import train_test_split
# 读取标签文件
with open('labels.txt', 'r', encoding='utf8') as f:
labels = f.readlines()
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(sequences, labels, test_size=0.2, random_state=42)
```
3. 构建和训练模型
使用以上给出的RNN模型,构建并训练模型。需要注意的是,模型的输出需要经过softmax激活函数,以保证输出结果是概率分布。代码如下:
```
import numpy as np
# 定义模型参数
input_size = len(tokenizer.word_index) + 1
hidden_size = 100
output_size = 10
learning_rate = 0.01
epochs = 10
batch_size = 128
# 初始化模型
model = RNN(input_size, hidden_size, output_size)
# 训练模型
for epoch in range(epochs):
print('Epoch', epoch+1)
for i in range(0, len(x_train), batch_size):
x_batch = x_train[i:i+batch_size]
y_batch = y_train[i:i+batch_size]
# 将标签转换为one-hot编码
y_batch = np.eye(output_size)[y_batch]
# 前向传播
y_pred, h = model.forward(x_batch.T)
# 计算损失函数
loss = -np.sum(y_batch*np.log(y_pred)) / len(x_batch)
# 反向传播
model.backward(x_batch.T, y_pred, y_batch, learning_rate)
# 在测试集上进行模型评估
y_test_pred, _ = model.forward(x_test.T)
y_test_pred = np.argmax(y_test_pred, axis=0)
accuracy = np.mean(np.equal(y_test_pred, y_test))
print('Test accuracy:', accuracy)
```
4. 模型评估
在训练过程中,可以在每个epoch结束后,在测试集上进行模型评估,以评估模型的性能。代码如下:
```
# 在测试集上进行模型评估
y_test_pred, _ = model.forward(x_test.T)
y_test_pred = np.argmax(y_test_pred, axis=0)
accuracy = np.mean(np.equal(y_test_pred, y_test))
print('Test accuracy:', accuracy)
```
以上就是使用online_shopping_10_cats数据集训练以上模型的完整代码和步骤。
阅读全文