基于opencv的segment segmentation和基于pytorch的有什么区别
时间: 2023-03-22 10:03:03 浏览: 175
很高兴回答您的问题。OpenCV 和 PyTorch 都是机器学习框架,它们基于不同的技术实现图像分割。OpenCV 使用基于像素的方法,分割图像中的对象,而 PyTorch 则使用深度学习技术,能够从图像中自动识别出对象。
相关问题
import cv2 import numpy as np import torch from skimage.segmentation import slic from skimage.util import img_as_float # 读取A图像和B图像 img_a = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\1.png') img_b = cv2.imread(r'D:\Users\Administrator\PycharmProjects\pythonProject\my tools\super_pixel\2.jpg') # 转换为浮点数 img_a = img_as_float(img_a) img_b = img_as_float(img_b) # 使用SLIC算法进行超像素分割 segments_a = slic(img_a, n_segments=1000, compactness=10) segments_b = slic(img_b, n_segments=1000, compactness=10) # 计算A图像的超像素范围 segment_ids = np.unique(segments_a) segment_ranges = [] for segment_id in segment_ids: y, x = np.where(segments_a == segment_id) min_x, max_x = np.min(x), np.max(x) min_y, max_y = np.min(y), np.max(y) segment_ranges.append((min_x, min_y, max_x, max_y)) # 创建A图像的超像素范围图 segment_map_a = np.zeros_like(segments_a, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_map_a[min_y:max_y+1, min_x:max_x+1] = i # 使用A图像的超像素范围索引对B图像进行分割 segment_map_b = np.zeros_like(segments_b, dtype=np.int32) for i, segment_range in enumerate(segment_ranges): min_x, min_y, max_x, max_y = segment_range segment_id = segments_a[min_y, min_x] y, x = np.where(segments_b == segment_id) segment_map_b[y, x] = i # 转换为PyTorch张量 segment_map_b = torch.Tensor(segment_map_b).long() # 显示B图像的超像素范围图 cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.waitKey(0) cv2.destroyAllWindows()。上述代码出现错误: cv2.imshow('Segment Map', segment_map_b.numpy()) cv2.error: OpenCV(4.7.0) D:/a/opencv-python/opencv-python/opencv/modules/highgui/src/precomp.hpp:155: error: (-215:Assertion failed) src_depth != CV_16F && src_depth != CV_32S in function 'convertToShow'
这个错误是因为在使用cv2.imshow()函数时,需要传入的图像是8位无符号整数类型,而segment_map_b是一个PyTorch张量,需要将其转换为NumPy数组并将其数据类型转换为np.uint8类型。你可以使用以下代码将张量转换为NumPy数组并将其数据类型转换为np.uint8类型:
```
cv2.imshow('Segment Map', segment_map_b.numpy().astype(np.uint8))
```
from skimage.segmentation import slic, mark_boundaries import torchvision.transforms as transforms import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 # 加载图像 image = Image.open('img.png') # 转换为 PyTorch 张量 transform = transforms.ToTensor() img_tensor = transform(image).unsqueeze(0) # 将 PyTorch 张量转换为 Numpy 数组 img_np = img_tensor.numpy().transpose(0, 2, 3, 1)[0] # 使用 SLIC 算法生成超像素标记图 segments = slic(img_np, n_segments=100, compactness=10) # 可视化超像素标记图 segment_img = mark_boundaries(img_np, segments) # 将 Numpy 数组转换为 PIL 图像 segment_img = Image.fromarray((segment_img * 255).astype(np.uint8)) # 保存超像素标记图 segment_img.save('segments.jpg') n_segments = np.max(segments) + 1 # 初始化超像素块的区域 segment_regions = np.zeros((n_segments, img_np.shape[0], img_np.shape[1])) # 遍历每个超像素块 for i in range(n_segments): # 获取当前超像素块的掩码 mask = (segments == i) # 将当前超像素块的掩码赋值给超像素块的区域 segment_regions[i][mask] = 1 # 保存超像素块的区域 np.save('segment_regions.npy', segment_regions) # 加载超像素块的区域 segment_regions = np.load('segment_regions.npy') # 取出第一个超像素块的区域 segment_region = segment_regions[37] segment_region = (segment_region * 255).astype(np.uint8) # 显示超像素块的区域 plt.imshow(segment_region, cmap='gray') plt.show(),将上述超像素块添加黄色的边缘
可以使用 OpenCV 中的 `cv2.rectangle` 函数来添加边缘。具体操作如下:
```python
# 加载超像素块的区域
segment_regions = np.load('segment_regions.npy')
# 取出第一个超像素块的区域
segment_region = segment_regions[37]
# 将超像素块区域转换为彩色图像
segment_region = cv2.cvtColor(segment_region, cv2.COLOR_GRAY2RGB)
# 添加黄色边缘
cv2.rectangle(segment_region, (0, 0), (segment_region.shape[1]-1, segment_region.shape[0]-1), (0, 255, 255), 2)
# 显示超像素块的区域
plt.imshow(segment_region)
plt.show()
```
这样就可以在超像素块的边缘添加黄色的边框了。
阅读全文