快速排序int Partition ( SqList L, int low, int high );

时间: 2023-12-21 17:06:59 浏览: 89
好的,这是一个快速排序的分区函数。其中SqList是一个线性表,low和high是分区的下标。 函数实现如下: ``` int Partition ( SqList L, int low, int high ) { int pivot = L[low]; // 选取第一个元素作为枢轴 while ( low < high ) { while ( low < high && L[high] >= pivot ) --high; L[low] = L[high]; // 将小于枢轴的元素移到左边 while ( low < high && L[low] <= pivot ) ++low; L[high] = L[low]; // 将大于枢轴的元素移到右边 } L[low] = pivot; // 将枢轴元素放入最终位置 return low; // 返回枢轴位置 } ``` 该函数的作用是将线性表中的元素按照枢轴分成两部分,左边的元素都小于枢轴,右边的元素都大于枢轴。这是快速排序算法的关键步骤。
相关问题

快速排序int Partition ( SqList L, int low, int high );本题要求实现快速排序的一趟划分函数,待排序列的长度1<=n<=1000。

好的,我可以帮你解决这个问题。 快速排序的划分函数,通常是选取待排序列中的一个元素作为枢轴(pivot),并将待排序列中小于枢轴的元素放到枢轴左边,大于枢轴的元素放到枢轴右边。这个过程被称为划分(Partition)。 以下是一个 C++ 实现的划分函数,你可以参考: ``` int Partition(SqList& L, int low, int high) { int pivot = L[low]; // 以第一个元素为枢轴 while (low < high) { while (low < high && L[high] >= pivot) --high; L[low] = L[high]; while (low < high && L[low] <= pivot) ++low; L[high] = L[low]; } L[low] = pivot; // 将枢轴放到正确的位置 return low; // 返回枢轴的位置 } ``` 这个划分函数的时间复杂度是 O(n),其中 n 是待排序列的长度。

#include<stdio.h> int Partition ( SqList &L,int low, int high ) { L.r[0] = L.r[low]; pivotkey = L.r[low].key; while ( low < high ) { while ( low < high && L.r[high].key >= pivotkey ) --high; L.r[low] = L.r[high]; while ( low < high && L.r[low].key <= pivotkey ) ++low; L.r[high] = L.r[low]; } L.r[low]=L.r[0]; return low;} void QSort ( SqList &L,int low, int high ) { if ( low < high ) { pivotloc = Partition(L, low, high ) ; Qsort (L, low, pivotloc-1) ; Qsort (L, pivotloc+1, high ) } } void main ( ) { QSort ( L, 1, L.length ); }补全程序以实现快速搜索

根据代码中的提示,需要实现快速排序算法。 完整的程序如下: ```c #include<stdio.h> #define MAXSIZE 100 typedef struct{ int key; // 其他数据域 }ElemType; typedef struct{ ElemType r[MAXSIZE+1]; // r[0] 作为哨兵或临时变量 int length; }SqList; int Partition(SqList &L, int low, int high){ L.r[0] = L.r[low]; int pivotkey = L.r[low].key; while(low < high){ while(low < high && L.r[high].key >= pivotkey){ --high; } L.r[low] = L.r[high]; while(low < high && L.r[low].key <= pivotkey){ ++low; } L.r[high] = L.r[low]; } L.r[low] = L.r[0]; return low; } void QSort(SqList &L, int low, int high){ if(low < high){ int pivotloc = Partition(L, low, high); QSort(L, low, pivotloc-1); QSort(L, pivotloc+1, high); } } int main(){ SqList L = {{0, 50, 10, 90, 30, 70, 40, 80, 60, 20}, 9}; QSort(L, 1, L.length); for(int i=1; i<=L.length; i++){ printf("%d ", L.r[i].key); } return 0; } ``` 在上面的代码中,`Partition` 函数用于将数组分为两部分,并返回分界点的位置,`QSort` 函数是递归实现的快速排序算法。 程序使用了 `typedef` 关键字定义了 `ElemType` 和 `SqList` 两个数据类型,其中 `SqList` 类型包含了一个 `ElemType` 类型的数组和该数组的长度。在 `main` 函数中,程序初始化了一个 `SqList` 类型的变量,并对其进行排序。

相关推荐

对序列(503,87,512,61,908,170,897,275,653,426)使用快速排序(以第1个记录为枢轴)算法进行排序,补充函数,输出最后的排序结果。函数为:// 快速排序 #include "stdio.h" #define MAXSIZE 20 //顺序表的最大长度 typedef struct { int key; char otherinfo; }ElemType; //顺序表的存储结构 typedef struct { ElemType r[20]; //存储空间的基地址 int length; //顺序表长度 }SqList; //顺序表类型 void show(SqList L) { int i; for(i=1;i<=L.length;i++) printf("%4d",L.r[i].key); printf("\n"); } int Partition(SqList &L,int low,int high) { //对顺序表L中的子表r[low..high]进行一趟排序,返回枢轴位置 //*************************************** //**************************************** }//Partition void QSort(SqList &L,int low,int high) { //调用前置初值:low=1; high=L.length; //对顺序表L中的子序列L.r[low..high]做快速排序 int pivotloc; if(low<high) { //长度大于1 pivotloc=Partition(L,low,high); //将L.r[low..high]一分为二,pivotloc是枢轴位置 QSort(L,low,pivotloc-1); //对左子表递归排序 QSort(L,pivotloc+1,high);//对右子表递归排序 } }//QSort void QuickSort(SqList &L) { //对顺序表L做快速排序 QSort(L,1,L.length); } //QuickSort void main() { SqList L; L.r[1].key=503; L.r[2].key=87; L.r[3].key=512; L.r[4].key=61; L.r[5].key=908; L.r[6].key=170; L.r[7].key=897; L.r[8].key=275; L.r[9].key=653; L.r[10].key=426; L.length=10; QuickSort(L); printf("快速排序后的结果为:"); show(L); }

//快速排序 #include<iostream> #include<fstream> using namespace std; #define MAXSIZE 20 //顺序表的最大长度 #define OK 0 #define ERROR -1 typedef char* InfoType; typedef struct { int key;//关键字项 InfoType otherinfo;//其他数据项 }RedType;//记录类型 typedef struct { RedType r[MAXSIZE+1];//r[0]闲置或用做哨兵单元 int length;//顺序表长度 }SqList;//顺序表类型 //初始化一个空的顺序表L void InitSqList(SqList &L) { L.length = 0; } //将待排序记录依次插入顺序表L void InsertSqList(SqList &L,ifstream& in) { int n;//待排序记录的个数 in>>n; if(n > MAXSIZE) exit(ERROR); for(int i=1; i<=n; ++i) { in>>L.r[i].key; ++L.length; } } //打印顺序表L void show(SqList L) { for(int i=1; i<=L.length; ++i) cout<<L.r[i].key<<" "; cout<<endl; } //对顺序表L中的子序列L.r[low..high]进行划分,返回枢轴的位置 //以L.r[low]作为枢轴 int Partition(SqList &L,int low,int high) { /*-------------代码开始------------------*/ /*-------------代码结束------------------*/ } //对顺序表L中的子序列L.r[low..high]做快速排序 //要求调用show函数打印每一趟划分的结果 void QSort(SqList &L,int low,int high) { /*-------------代码开始------------------*/ /*-------------代码结束------------------*/ } //对顺序表L做快速排序 void QuickSort(SqList &L) { show(L);//打印初始待排序序列 QSort(L,1,L.length); } int main() { ifstream in("data/测试数据.txt");//测试数据 SqList L; InitSqList(L); InsertSqList(L,in); QuickSort(L); return OK; }补充这段代码

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依