//快速排序 //划分操作 int partition(SqList* L, int low, int high) { RedType pivot = L->r[low]; //用子序列的第一个记录作为基准 while (low < high) { //两路快排的方式,使得有大量重复元素的时候,依然能较平均的分布在两个子序列中 // 使用“挖坑法” while (high > low && L->r[high].key >= pivot.key) high--; L->r[low] = L->r[high]; while (low < high && L->r[low].key <= pivot.key) low++; L->r[high] = L->r[low]; } L->r[low] = pivot; //基准记录到位 return low; //返回基准所在位置 } //对顺序表L[low...high]作快速排序 void QuickSort(SqList* L, int low, int high) { if (low < high) {//当序列长度为1时,返回 int pivot = partition(L, low, high); QuickSort(L, low, pivot - 1); QuickSort(L, pivot + 1, high); } }请找到这段快速排序代码的问题

时间: 2024-04-14 08:30:32 浏览: 23
这段快速排序代码存在一个问题,即在划分操作中,当序列中存在重复元素时,可能会出现无限循环的情况。具体来说,当序列中存在多个与基准元素相等的元素时,在划分操作中,可能会将这些相等的元素交换到不正确的位置,导致无法正确划分子序列。 解决这个问题的方式是,在划分操作中使用“左右指针法”而不是“挖坑法”,同时对于与基准元素相等的元素,可以将它们放在划分操作的一侧,以确保正确划分子序列。 以下是修改后的划分操作代码: ```cpp int partition(SqList* L, int low, int high) { RedType pivot = L->r[low]; int left = low + 1; int right = high; while (left <= right) { while (left <= right && L->r[left].key <= pivot.key) left++; while (left <= right && L->r[right].key > pivot.key) right--; if (left < right) { swap(L->r[left], L->r[right]); left++; right--; } } // 将基准元素放到正确的位置 swap(L->r[low], L->r[right]); return right; } ``` 通过使用“左右指针法”,我们可以确保正确划分子序列,并避免了无限循环的问题。
相关问题

//快速排序 //划分操作 int partition(SqList* L, int low, int high) { low = 0; high = L->length; RedType pivot = L->r[low]; //用子序列的第一个记录作为基准 while (low < high) { //两路快排的方式,使得有大量重复元素的时候,依然能较平均的分布在两个子序列中 // 使用“挖坑法” while (high > low && L->r[high].key >= pivot.key) high--; L->r[low] = L->r[high]; while (low < high && L->r[low].key <= pivot.key) low++; L->r[high] = L->r[low]; } L->r[low] = pivot; //基准记录到位 return low; //返回基准所在位置 } //对顺序表L[low...high]作快速排序 void QuickSort(SqList* L, int low, int high) { if (low < high) {//当序列长度为1时,返回 int pivot = partition(L, low, high); QuickSort(L, low, pivot - 1); QuickSort(L, pivot + 1, high); } }这段代码不能成功进行排序,请改正这段快速排序的代码

在你给出的代码中,有一个问题导致排序无法成功。在划分操作中,传递给 partition 函数的参数 `low` 和 `high` 被重置为了固定的值 0 和 L->length。这会导致递归调用 QuickSort 函数时,每次都传递相同的 `low` 和 `high` 值,导致无限递归。 为了修复这个问题,你应该将划分操作函数的参数修改为传递的 `low` 和 `high`。 以下是修改后的代码: ```cpp //划分操作 int partition(SqList* L, int low, int high) { RedType pivot = L->r[low]; //用子序列的第一个记录作为基准 while (low < high) { //两路快排的方式,使得有大量重复元素的时候,依然能较平均的分布在两个子序列中 // 使用“挖坑法” while (high > low && L->r[high].key >= pivot.key) high--; L->r[low] = L->r[high]; while (low < high && L->r[low].key <= pivot.key) low++; L->r[high] = L->r[low]; } L->r[low] = pivot; //基准记录到位 return low; //返回基准所在位置 } //对顺序表L[low...high]作快速排序 void QuickSort(SqList* L, int low, int high) { if (low < high) { //当序列长度为1时,返回 int pivot = partition(L, low, high); QuickSort(L, low, pivot - 1); QuickSort(L, pivot + 1, high); } } ``` 这样,你应该能够成功地对顺序表进行快速排序了。记得在调用 QuickSort 函数时传递正确的 `low` 和 `high` 值。

快速排序int Partition ( SqList L, int low, int high );

好的,这是一个快速排序的分区函数。其中SqList是一个线性表,low和high是分区的下标。 函数实现如下: ``` int Partition ( SqList L, int low, int high ) { int pivot = L[low]; // 选取第一个元素作为枢轴 while ( low < high ) { while ( low < high && L[high] >= pivot ) --high; L[low] = L[high]; // 将小于枢轴的元素移到左边 while ( low < high && L[low] <= pivot ) ++low; L[high] = L[low]; // 将大于枢轴的元素移到右边 } L[low] = pivot; // 将枢轴元素放入最终位置 return low; // 返回枢轴位置 } ``` 该函数的作用是将线性表中的元素按照枢轴分成两部分,左边的元素都小于枢轴,右边的元素都大于枢轴。这是快速排序算法的关键步骤。

相关推荐

//快速排序 #include<iostream> #include<fstream> using namespace std; #define MAXSIZE 20 //顺序表的最大长度 #define OK 0 #define ERROR -1 typedef char* InfoType; typedef struct { int key;//关键字项 InfoType otherinfo;//其他数据项 }RedType;//记录类型 typedef struct { RedType r[MAXSIZE+1];//r[0]闲置或用做哨兵单元 int length;//顺序表长度 }SqList;//顺序表类型 //初始化一个空的顺序表L void InitSqList(SqList &L) { L.length = 0; } //将待排序记录依次插入顺序表L void InsertSqList(SqList &L,ifstream& in) { int n;//待排序记录的个数 in>>n; if(n > MAXSIZE) exit(ERROR); for(int i=1; i<=n; ++i) { in>>L.r[i].key; ++L.length; } } //打印顺序表L void show(SqList L) { for(int i=1; i<=L.length; ++i) cout<<L.r[i].key<<" "; cout<<endl; } //对顺序表L中的子序列L.r[low..high]进行划分,返回枢轴的位置 //以L.r[low]作为枢轴 int Partition(SqList &L,int low,int high) { /*-------------代码开始------------------*/ /*-------------代码结束------------------*/ } //对顺序表L中的子序列L.r[low..high]做快速排序 //要求调用show函数打印每一趟划分的结果 void QSort(SqList &L,int low,int high) { /*-------------代码开始------------------*/ /*-------------代码结束------------------*/ } //对顺序表L做快速排序 void QuickSort(SqList &L) { show(L);//打印初始待排序序列 QSort(L,1,L.length); } int main() { ifstream in("data/测试数据.txt");//测试数据 SqList L; InitSqList(L); InsertSqList(L,in); QuickSort(L); return OK; }补充这段代码

对序列(503,87,512,61,908,170,897,275,653,426)使用快速排序(以第1个记录为枢轴)算法进行排序,补充函数,输出最后的排序结果。函数为:// 快速排序 #include "stdio.h" #define MAXSIZE 20 //顺序表的最大长度 typedef struct { int key; char otherinfo; }ElemType; //顺序表的存储结构 typedef struct { ElemType r[20]; //存储空间的基地址 int length; //顺序表长度 }SqList; //顺序表类型 void show(SqList L) { int i; for(i=1;i<=L.length;i++) printf("%4d",L.r[i].key); printf("\n"); } int Partition(SqList &L,int low,int high) { //对顺序表L中的子表r[low..high]进行一趟排序,返回枢轴位置 //*************************************** //**************************************** }//Partition void QSort(SqList &L,int low,int high) { //调用前置初值:low=1; high=L.length; //对顺序表L中的子序列L.r[low..high]做快速排序 int pivotloc; if(low<high) { //长度大于1 pivotloc=Partition(L,low,high); //将L.r[low..high]一分为二,pivotloc是枢轴位置 QSort(L,low,pivotloc-1); //对左子表递归排序 QSort(L,pivotloc+1,high);//对右子表递归排序 } }//QSort void QuickSort(SqList &L) { //对顺序表L做快速排序 QSort(L,1,L.length); } //QuickSort void main() { SqList L; L.r[1].key=503; L.r[2].key=87; L.r[3].key=512; L.r[4].key=61; L.r[5].key=908; L.r[6].key=170; L.r[7].key=897; L.r[8].key=275; L.r[9].key=653; L.r[10].key=426; L.length=10; QuickSort(L); printf("快速排序后的结果为:"); show(L); }

#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX_SIZE 100 typedef struct { int book_id; char book_name[50]; float price; } Book; typedef struct { Book books[MAX_SIZE]; int length; } BookList; void input_books(BookList* list, int n) { for (int i = 0; i < n; i++) { printf("请输入第%d本书的信息:\n", i + 1); printf("图书编号:"); scanf("%d", &list->books[i].book_id); printf("书名:"); scanf("%s", list->books[i].book_name); printf("价格:"); scanf("%f", &list->books[i].price); } list->length = n; } void display_books(BookList* list) { printf("图书表中所有图书的相关信息:\n"); for (int i = 0; i < list->length; i++) { printf("图书编号:%d\n", list->books[i].book_id); printf("书名:%s\n", list->books[i].book_name); printf("价格:%f\n", list->books[i].price); } } void insert_book(BookList* list, int pos, Book book) { if (pos < 1 || pos > list->length + 1) { printf("插入位置不合法!\n"); return; } for (int i = list->length - 1; i >= pos - 1; i--) { list->books[i + 1] = list->books[i]; } list->books[pos - 1] = book; list->length++; } void delete_book(BookList* list, int pos) { if (pos < 1 || pos > list->length) { printf("删除位置不合法!\n"); return; } for (int i = pos - 1; i < list->length - 1; i++) { list->books[i] = list->books[i + 1]; } list->length--; } int count_books(BookList* list) { return list->length; } int partition(BookList* list, int low, int high) { Book pivot = list->books[low]; while (low < high) { while (low < high && list->books[high].book_id >= pivot.book_id) high--; list->books[low] = list->books[high]; while (low < high && list->books[low].book_id <= pivot.book_id) low++; list->books[high] = list->books[low]; } list->books[low] = pivot; return low; } void quick_sort(BookList* list, int

最新推荐

recommend-type

一个基于C语言的简易学生管理系统.zip

C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言中常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过中序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言中都有相应的实现方式,可以应用于各种不同的场景。C语言中的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存中是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
recommend-type

数通系列ospf学习思维导图

数通系列ospf学习思维导图
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键