gru时间序列预测python
时间: 2023-08-29 22:13:42 浏览: 97
GRU时间序列预测(Python完整源码和数据)
5星 · 资源好评率100%
作为一名AI语言模型,我可以为您提供一些Python代码示例,用于使用GRU模型进行时间序列预测。
首先,您需要安装所需的Python库,如TensorFlow和Keras:
```
pip install tensorflow
pip install keras
```
然后,您可以使用以下代码示例来加载并准备您的时间序列数据:
```
import numpy as np
# Load and prepare data
data = np.genfromtxt('data.csv', delimiter=',')
train_data = data[:8000]
test_data = data[8000:]
# Normalize data
mean = train_data.mean(axis=0)
std = train_data.std(axis=0)
train_data = (train_data - mean) / std
test_data = (test_data - mean) / std
# Define window size
window_size = 10
# Define function to create input/output pairs
def create_pairs(data, window_size):
inputs = []
outputs = []
for i in range(len(data) - window_size):
inputs.append(data[i:i+window_size])
outputs.append(data[i+window_size])
return np.array(inputs), np.array(outputs)
# Create input/output pairs for training and testing data
train_inputs, train_outputs = create_pairs(train_data, window_size)
test_inputs, test_outputs = create_pairs(test_data, window_size)
```
接下来,您可以使用以下代码示例来创建和训练GRU模型:
```
from keras.models import Sequential
from keras.layers import Dense, GRU
# Define model architecture
model = Sequential()
model.add(GRU(64, input_shape=(window_size, 1)))
model.add(Dense(1))
# Compile model
model.compile(loss='mse', optimizer='adam')
# Train model
model.fit(train_inputs, train_outputs, epochs=50, batch_size=64, validation_data=(test_inputs, test_outputs))
```
最后,您可以使用以下代码示例来进行时间序列预测:
```
# Predict on test data
test_predictions = model.predict(test_inputs)
# Denormalize data
test_predictions = (test_predictions * std) + mean
test_outputs = (test_outputs * std) + mean
# Plot results
import matplotlib.pyplot as plt
plt.plot(test_outputs, label='Actual')
plt.plot(test_predictions, label='Predicted')
plt.legend()
plt.show()
```
这些代码示例仅供参考。请注意,您需要根据您的数据和应用程序进行调整和优化。
阅读全文