while True: question =result['result'][0] if question == 'q': break question_k = similarity_k(question, 3) text=format(answerList[question_k[0][0]]) from aip import AipSpeech from playsound import playsound APP_ID = '33964061' API_KEY = 'HF5yFkTWOGrZDW3mGchZMmul' SECRET_KEY = 'h3IavQmG4xnqkIhIQwKoRj6zBxGoGQxa' client = AipSpeech(APP_ID, API_KEY, SECRET_KEY) result = client.synthesis(text, 'zh', 1, { 'vol': 5, 'per': 0 }) print(result) if not isinstance(result, dict): with open('audiol1.mp3', 'wb') as f: f.write(result) playsound('audiol1.mp3') print(text) break

时间: 2024-03-30 19:38:43 浏览: 11
这段代码是一个while循环,它会不断地读取用户的输入并进行处理。当用户输入的问题为'q'时,循环会结束,程序会退出。 在循环内部,首先会调用similarity_k()函数计算用户输入的问题与预设问题的相似度,返回最相似的问题及其索引。然后将最相似问题的回答文本进行格式化,调用AipSpeech语音合成API生成语音,并保存为mp3格式的音频文件。最后使用playsound库播放生成的音频文件,并将回答文本输出到控制台上。 需要注意的是,这段代码中使用了百度的AipSpeech语音合成API,需要提前申请API Key和Secret Key。同时,如果要运行这段代码需要安装playsound库,可以使用pip install playsound命令进行安装。
相关问题

如何让这个代码循环使用 question =result['result'][0] if question == '结束': question_k = similarity_k(question, 3) text=format(answerList[question_k[0][0]]) from aip import AipSpeech from playsound import playsound APP_ID = '33964061' API_KEY = 'HF5yFkTWOGrZDW3mGchZMmul' SECRET_KEY = 'h3IavQmG4xnqkIhIQwKoRj6zBxGoGQxa' client = AipSpeech(APP_ID, API_KEY, SECRET_KEY) result = client.synthesis(text, 'zh', 1, { 'vol': 5, 'per': 0 }) print(result) if not isinstance(result, dict): with open('audiol1.mp3', 'wb') as f: f.write(result) playsound('audiol1.mp3') print(text)

要让这段代码循环使用,可以将它放在一个while循环中,并在循环中加入一个条件判断语句,当用户输入的问题为'结束'时,循环会结束,程序会退出。整个代码如下所示: ``` from aip import AipSpeech from playsound import playsound APP_ID = '33964061' API_KEY = 'HF5yFkTWOGrZDW3mGchZMmul' SECRET_KEY = 'h3IavQmG4xnqkIhIQwKoRj6zBxGoGQxa' client = AipSpeech(APP_ID, API_KEY, SECRET_KEY) def generate_audio(text): result = client.synthesis(text, 'zh', 1, {'vol': 5, 'per': 0}) if not isinstance(result, dict): with open('audiol1.mp3', 'wb') as f: f.write(result) playsound('audiol1.mp3') while True: question = input('请输入您的问题:') if question == '结束': break question_k = similarity_k(question, 3) text = format(answerList[question_k[0][0]]) generate_audio(text) print(text) ``` 这个代码会一直循环等待用户的输入,直到用户输入'结束'为止。用户输入的问题会通过similarity_k()函数计算相似度,并生成对应的回答文本。然后调用generate_audio()函数生成音频并播放,最后将回答文本输出到控制台上。

解释这段代码:similarity_matrix_1 = pdist(data1);

这段代码使用了Python中的scipy库中的pdist函数,用于计算一个矩阵中每两个向量之间的距离。具体来说,这里的data1是一个矩阵,其中每一行表示一个向量,pdist函数会计算出data1中每两个向量之间的距离,并将这些距离存储在一个向量中,即similarity_matrix_1。这里的距离指的是向量之间的欧几里得距离,也可以根据需要使用其他距离度量方式。

相关推荐

from transformers import pipeline, BertTokenizer, BertModel import numpy as np import torch import jieba tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') ner_pipeline = pipeline('ner', model='bert-base-chinese') with open('output/weibo1.txt', 'r', encoding='utf-8') as f: data = f.readlines() def cosine_similarity(v1, v2): return np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)) def get_word_embedding(word): input_ids = tokenizer.encode(word, add_special_tokens=True) inputs = torch.tensor([input_ids]) outputs = model(inputs)[0][0][1:-1] word_embedding = np.mean(outputs.detach().numpy(), axis=0) return word_embedding def get_privacy_word(seed_word, data): privacy_word_list = [] seed_words = jieba.lcut(seed_word) jieba.load_userdict('data/userdict.txt') for line in data: words = jieba.lcut(line.strip()) ner_results = ner_pipeline(''.join(words)) for seed_word in seed_words: seed_word_embedding = get_word_embedding(seed_word) for ner_result in ner_results: if ner_result['word'] == seed_word and ner_result['entity'] == 'O': continue if ner_result['entity'] != seed_word: continue word = ner_result['word'] if len(word) < 3: continue word_embedding = get_word_embedding(word) similarity = cosine_similarity(seed_word_embedding, word_embedding) print(similarity, word) if similarity >= 0.6: privacy_word_list.append(word) privacy_word_set = set(privacy_word_list) return privacy_word_set 上述代码运行之后,结果为空集合,哪里出问题了,帮我修改一下

详细解释一下这段代码,每一句给出详细注解:results_df = pd.DataFrame(columns=['image_path', 'dataset', 'scene', 'rotation_matrix', 'translation_vector']) for dataset_scene in tqdm(datasets_scenes, desc='Running pipeline'): dataset, scene = dataset_scene.split('/') img_dir = f"{INPUT_ROOT}/{'train' if DEBUG else 'test'}/{dataset}/{scene}/images" if not os.path.exists(img_dir): continue feature_dir = f"{DATA_ROOT}/featureout/{dataset}/{scene}" os.system(f"rm -rf {feature_dir}") os.makedirs(feature_dir) fnames = sorted(glob(f"{img_dir}/*")) print('fnames',len(fnames)) # Similarity pipeline if sim_th: index_pairs, h_w_exif = get_image_pairs_filtered(similarity_model, fnames=fnames, sim_th=sim_th, min_pairs=20, all_if_less=20) else: index_pairs, h_w_exif = get_img_pairs_all(fnames=fnames) # Matching pipeline matching_pipeline(matching_model=matching_model, fnames=fnames, index_pairs=index_pairs, feature_dir=feature_dir) # Colmap pipeline maps = colmap_pipeline(img_dir, feature_dir, h_w_exif=h_w_exif) # Postprocessing results = postprocessing(maps, dataset, scene) # Create submission for fname in fnames: image_id = '/'.join(fname.split('/')[-4:]) if image_id in results: R = results[image_id]['R'].reshape(-1) T = results[image_id]['t'].reshape(-1) else: R = np.eye(3).reshape(-1) T = np.zeros((3)) new_row = pd.DataFrame({'image_path': image_id, 'dataset': dataset, 'scene': scene, 'rotation_matrix': arr_to_str(R), 'translation_vector': arr_to_str(T)}, index=[0]) results_df = pd.concat([results_df, new_row]).reset_index(drop=True)

from transformers import BertTokenizer, BertModel import torch from sklearn.metrics.pairwise import cosine_similarity # 加载BERT模型和分词器 tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertModel.from_pretrained('bert-base-chinese') # 种子词列表 seed_words = ['个人信息', '隐私', '泄露', '安全'] # 加载微博用户文本语料(假设存储在weibo1.txt文件中) with open('output/weibo1.txt', 'r', encoding='utf-8') as f: corpus = f.readlines() # 预处理文本语料,获取每个中文词汇的词向量 corpus_vectors = [] for text in corpus: # 使用BERT分词器将文本分成词汇 tokens = tokenizer.tokenize(text) # 将词汇转换为对应的id input_ids = tokenizer.convert_tokens_to_ids(tokens) # 将id序列转换为PyTorch张量 input_ids = torch.tensor(input_ids).unsqueeze(0) # 使用BERT模型计算词向量 with torch.no_grad(): outputs = model(input_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) corpus_vectors.append(avg_pooling.numpy()) # 计算每个中文词汇与种子词的余弦相似度 similarity_threshold = 0.8 privacy_words = set() for seed_word in seed_words: # 将种子词转换为对应的id seed_word_ids = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(seed_word)) # 将id序列转换为PyTorch张量,并增加batch size维度 seed_word_ids = torch.tensor(seed_word_ids).unsqueeze(0) # 使用BERT模型计算种子词的词向量 with torch.no_grad(): outputs = model(seed_word_ids) last_hidden_state = outputs[0][:, 1:-1, :] avg_pooling = torch.mean(last_hidden_state, dim=1) seed_word_vector = avg_pooling.numpy() # 计算每个中文词汇与种子词的余弦相似度 for i, vector in enumerate(corpus_vectors): sim = cosine_similarity([seed_word_vector], [vector])[0][0] if sim >= similarity_threshold: privacy_words.add(corpus[i]) print(privacy_words) 上述代码运行后报错了,报错信息:ValueError: Found array with dim 3. check_pairwise_arrays expected <= 2. 怎么修改?

最新推荐

recommend-type

elastic-ca证书

elastic-ca证书
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述
recommend-type

ic验证工作中如何在平台中加入发数的总数?

在进行IC验证工作时,可以通过以下步骤在平台中加入发数的总数: 1. 打开IC验证工具(如Cadence Virtuoso)并打开对应的设计文件。 2. 在设计文件中选择需要计算发数的部分电路或模块。 3. 在IC验证工具中打开时序分析工具(如Cadence Tempus)。 4. 在时序分析工具中设置好时钟频率、时钟周期等参数。 5. 执行时序分析,生成时序报告。 6. 在时序报告中查找发数统计信息,将其记录下来。 7. 将发数统计信息添加到平台中,以便在之后的仿真或验证中使用。 需要注意的是,发数统计信息可能因为设计文件的不同而有所差异,需要根据实际情况进行调整和计算。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。