solution: Optional[Node[MazeLocation]] = astar(m.start, m.goal_test, m.successors, distance)
时间: 2024-04-04 10:29:41 浏览: 128
这段代码中使用了 A* 算法来找到从起点到终点的最短路径。其中,`astar` 函数的第一个参数是起点位置,第二个参数是判断当前位置是否为终点的函数,第三个参数是获取当前位置相邻节点的函数,第四个参数是计算当前位置到目标位置的估价函数(即曼哈顿距离函数)。函数的返回值是最终找到的路径上的最后一个节点,是一个 `Node[MazeLocation]` 类型的可选值,因为有可能找不到从起点到终点的路径。如果找到了路径,我们可以通过这个节点的 `path()` 方法得到完整的路径。
需要注意的是,这里的 `Optional` 类型表示这个值可以是 `None` 或者一个 `Node[MazeLocation]` 类型的值。这个类型的使用是为了避免可能出现的空指针异常。
相关问题
用Python编写代码在此代码下利用Astar算法寻路,其中p为随机生成障碍物的概率:class randomMAP: def init(self, size, start, goal, p): self.size = size self.start = start self.goal = goal self.p = p def creatmap(self): self.map =np.zeros(self.size, dtype='int') for i in range(self.map.shape[0]): for j in range(self.map.shape[1]): if (i != self.start[0] or j != self.start[1]) and (i != self.goal[0] or j != self.goal[1]) and random.random() < self.p: self.map[i][j] = 5 map1 = randomMAP((20, 20), (0, 0), (19, 19), 0.3) map1.creatmap() print(map1.map) plt.matshow(map1.map) plt.show()
这段代码创建了一个随机地图,其中包含随机生成的障碍物。使用A*算法寻路需要先定义节点类,然后实现A*算法的具体逻辑。下面是一个简单的实现,可以根据自己的需求进行修改:
```python
import numpy as np
import random
import heapq
import matplotlib.pyplot as plt
class Node:
def __init__(self, x, y):
self.x = x
self.y = y
self.g = 0
self.h = 0
self.f = 0
self.parent = None
def __lt__(self, other):
return self.f < other.f
class AStar:
def __init__(self, start, goal, map):
self.start = start
self.goal = goal
self.map = map
def heuristic(self, a, b):
# 曼哈顿距离作为启发函数
return abs(a.x - b.x) + abs(a.y - b.y)
def get_neighbors(self, node):
neighbors = []
for i in range(-1, 2):
for j in range(-1, 2):
if i == 0 and j == 0:
continue
x = node.x + i
y = node.y + j
if x < 0 or x >= self.map.shape[0] or y < 0 or y >= self.map.shape[1]:
continue
if self.map[x][y] == 5:
continue
neighbors.append(Node(x, y))
return neighbors
def search(self):
open_list = []
closed_list = []
start_node = Node(self.start[0], self.start[1])
goal_node = Node(self.goal[0], self.goal[1])
heapq.heappush(open_list, start_node)
while len(open_list) > 0:
current_node = heapq.heappop(open_list)
if current_node.x == goal_node.x and current_node.y == goal_node.y:
path = []
while current_node is not None:
path.append((current_node.x, current_node.y))
current_node = current_node.parent
return path[::-1]
closed_list.append(current_node)
for neighbor in self.get_neighbors(current_node):
if neighbor in closed_list:
continue
neighbor.g = current_node.g + 1
neighbor.h = self.heuristic(neighbor, goal_node)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_node
if neighbor not in open_list:
heapq.heappush(open_list, neighbor)
return None
class randomMAP:
def __init__(self, size, start, goal, p):
self.size = size
self.start = start
self.goal = goal
self.p = p
def creatmap(self):
self.map = np.zeros(self.size, dtype='int')
for i in range(self.map.shape[0]):
for j in range(self.map.shape[1]):
if (i != self.start[0] or j != self.start[1]) and (i != self.goal[0] or j != self.goal[1]) and random.random() < self.p:
self.map[i][j] = 5
map1 = randomMAP((20, 20), (0, 0), (19, 19), 0.3)
map1.creatmap()
print(map1.map)
astar = AStar(map1.start, map1.goal, map1.map)
path = astar.search()
if path is None:
print("No path found")
else:
print(path)
plt.matshow(map1.map)
if path is not None:
path_x = [x for (x, y) in path]
path_y = [y for (x, y) in path]
plt.plot(path_y, path_x, 'r')
plt.show()
```
这个实现中,为了方便起见,启发函数使用的是曼哈顿距离。如果需要更高的精度,可以使用欧几里得距离或其他启发函数。
class randomMAP: def __init__(self,size,start,goal,p): self.size=size self.start=start self.goal=goal self.p=p def creatMAP(self): self.map=np.zeros(self.size,dtype='int') for i in range(self.map.shape[0]): for j in range(self.map.shape[1]): if((i!=self.start[0] or i!=self.start[1]) and (j!=self.goal[0] or j!=self.goal[1])) and random.random() <self.p: self.map[i][j] = 5 map1=randomMAP((20,20),(0,0),(19,19),0.3) map1.creatMAP() plt.matshow(map1.map) plt.show()在这个随机地图的基础上创建Point和Astar类,用于A*算法解决迷宫问题
好的,下面是代码实现:
```python
import numpy as np
import random
import heapq
import matplotlib.pyplot as plt
class randomMAP:
def __init__(self, size, start, goal, p):
self.size = size
self.start = start
self.goal = goal
self.p = p
def creatMAP(self):
self.map = np.zeros(self.size, dtype='int')
for i in range(self.map.shape[0]):
for j in range(self.map.shape[1]):
if((i != self.start[0] or i != self.start[1]) and (j != self.goal[0] or j != self.goal[1])) and random.random() < self.p:
self.map[i][j] = 5
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
self.g = 0
self.h = 0
self.f = 0
self.parent = None
def __lt__(self, other):
return self.f < other.f
class Astar:
def __init__(self, map, start, goal):
self.map = map
self.start = start
self.goal = goal
def heuristic(self, p1, p2):
return abs(p1.x - p2.x) + abs(p1.y - p2.y)
def get_neighbors(self, point):
neighbors = []
if point.x > 0 and self.map[point.x - 1][point.y] != 5:
neighbors.append(Point(point.x - 1, point.y))
if point.x < self.map.shape[0] - 1 and self.map[point.x + 1][point.y] != 5:
neighbors.append(Point(point.x + 1, point.y))
if point.y > 0 and self.map[point.x][point.y - 1] != 5:
neighbors.append(Point(point.x, point.y - 1))
if point.y < self.map.shape[1] - 1 and self.map[point.x][point.y + 1] != 5:
neighbors.append(Point(point.x, point.y + 1))
return neighbors
def find_path(self):
open_list = []
closed_list = []
start_point = Point(self.start[0], self.start[1])
goal_point = Point(self.goal[0], self.goal[1])
heapq.heappush(open_list, start_point)
while len(open_list) > 0:
current_point = heapq.heappop(open_list)
if current_point.x == goal_point.x and current_point.y == goal_point.y:
path = []
while current_point.parent is not None:
path.append((current_point.x, current_point.y))
current_point = current_point.parent
path.append((start_point.x, start_point.y))
path.reverse()
return path
closed_list.append(current_point)
neighbors = self.get_neighbors(current_point)
for neighbor in neighbors:
if neighbor in closed_list:
continue
g = current_point.g + 1
if neighbor not in open_list:
neighbor.g = g
neighbor.h = self.heuristic(neighbor, goal_point)
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_point
heapq.heappush(open_list, neighbor)
else:
if g < neighbor.g:
neighbor.g = g
neighbor.f = neighbor.g + neighbor.h
neighbor.parent = current_point
return None
map1 = randomMAP((20, 20), (0, 0), (19, 19), 0.3)
map1.creatMAP()
plt.matshow(map1.map)
plt.show()
astar = Astar(map1.map, (0, 0), (19, 19))
path = astar.find_path()
if path is not None:
print(path)
else:
print("No path found.")
```
这里我们定义了一个`Point`类来表示地图上的一个点,其中包含了`x`和`y`坐标,以及`g`、`h`、`f`和`parent`属性。`g`表示起点到该点的距离,`h`表示该点到终点的估算距离,`f`表示`g`和`h`的和,`parent`表示该点的父节点。
然后我们定义了`Astar`类来实现A*算法。这里的`heuristic`函数采用了曼哈顿距离作为估算函数,`get_neighbors`函数用来获取当前点的邻居节点。在`find_path`函数中,我们使用了一个优先队列来维护开放列表,每次从开放列表中弹出f值最小的节点进行拓展。如果找到了终点,就从终点一直回溯到起点,构造出一条路径。如果开放列表为空,说明没有找到路径。
最后,我们生成了一个随机地图并在matplotlib中显示出来,然后使用A*算法找到起点到终点的路径,如果找到了路径就输出路径上的所有点,否则输出"No path found."。
阅读全文