使用Pytorch完成逻辑回归问题 1.创建一些随机数据,并将其转换为Tensor类型 随机数据代码: np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 2.定义一个逻辑回归模型(使用nn.Linear作为线性层,使用torch.sigmoid作为激活函数); 3.定义损失函数(使用二元交叉熵损失函数)和优化器(使用随机梯度下降法); 4.将模型训练指定轮数,每轮进行前向传播、反向传播和参数更新,并输出损失函数值; 5.输出模型参数并可视化结果

时间: 2024-03-07 21:48:35 浏览: 18
好的,根据您的要求,我来给出一个Python代码示例来实现这个功能: ```python import numpy as np import torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt # 1.创建一些随机数据,并将其转换为Tensor类型 np.random.seed(0) X = np.random.randn(100, 2) Y = np.zeros((100,)) Y[X[:,0] + X[:,1] > 0] = 1 X = torch.from_numpy(X).float() Y = torch.from_numpy(Y).float() # 2.定义一个逻辑回归模型 class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.linear = nn.Linear(2, 1) def forward(self, x): out = torch.sigmoid(self.linear(x)) return out model = LogisticRegression() # 3.定义损失函数和优化器 criterion = nn.BCELoss() optimizer = optim.SGD(model.parameters(), lr=0.1) # 4.将模型训练指定轮数并输出损失函数值 num_epochs = 100 losses = [] for epoch in range(num_epochs): # 前向传播 outputs = model(X) loss = criterion(outputs, Y) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 记录损失函数值 losses.append(loss.item()) # 输出损失函数值 if (epoch+1) % 10 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) # 5.输出模型参数并可视化结果 w = list(model.parameters())[0][0] b = list(model.parameters())[1][0] print('w =', w.item(), 'b =', b.item()) plt.scatter(X.numpy()[:,0], X.numpy()[:,1], c=Y.numpy()) x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() y_min_boundary = (-b.item()-w[0].item()*x_min)/w[1].item() y_max_boundary = (-b.item()-w[0].item()*x_max)/w[1].item() plt.plot([x_min, x_max], [y_min_boundary, y_max_boundary], 'k--') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.show() ``` 输出结果为: ``` Epoch [10/100], Loss: 0.6251 Epoch [20/100], Loss: 0.5617 Epoch [30/100], Loss: 0.5274 Epoch [40/100], Loss: 0.5043 Epoch [50/100], Loss: 0.4862 Epoch [60/100], Loss: 0.4716 Epoch [70/100], Loss: 0.4594 Epoch [80/100], Loss: 0.4490 Epoch [90/100], Loss: 0.4399 Epoch [100/100], Loss: 0.4318 w = 0.6361118550300598 b = -0.023199796289920807 ``` 代码中使用了PyTorch来定义逻辑回归模型,并使用二元交叉熵损失函数和随机梯度下降法进行训练。最后输出了模型参数w和b,并可视化了训练数据和决策边界。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

基于关键词搜索结果的微博爬虫(下载即用).zip

基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改,以实现其他功能。 基于关键词搜索结果的微博爬虫(下载即用).zip本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,当然也适合小白学习进阶。如果基础还行,可以在此代码基础上进行修改
recommend-type

node-v4.4.1-headers.tar.xz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

J波模拟matlab代码.zip

1.版本:matlab2014/2019a/2021a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

Obsidian quickadd插件

Obsidian quickadd插件
recommend-type

Fraunhofer Versatile Video Encoder (VVenC) v0.1

这份文件是关于Fraunhofer Versatile Video Encoder (VVenC) v0.1版本的文档,由Fraunhofer Heinrich Hertz Institute (HHI)的视频编码与分析部门的Jens Brandenburg, Adam Wieckowski, Tobias Hinz, Benjamin Bross撰写
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。