matlab支持向量机算法
时间: 2023-05-31 11:05:51 浏览: 120
Matlab支持向量机算法是一种非常强大的机器学习算法,适用于分类、回归和异常检测等任务。Matlab中的支持向量机算法实现了多种核函数,可以处理非线性问题。以下是Matlab支持向量机算法的主要步骤:
1. 数据准备:将数据集分为训练集和测试集,并对数据进行归一化处理。
2. 模型选择:选择支持向量机算法的类型和核函数类型,以及其他参数。
3. 模型训练:使用训练集训练支持向量机模型,得到模型的参数。
4. 模型测试:使用测试集测试模型的性能,并计算模型的准确率、精确率和召回率等指标。
5. 模型优化:根据测试结果调整模型参数,提高模型的性能。
Matlab支持向量机算法可以使用SVM函数实现,该函数提供了训练和测试支持向量机模型所需的所有功能。以下是Matlab中使用支持向量机算法实现分类的示例代码:
% 准备数据
load fisheriris
X = meas(:,3:4);
Y = species;
% 划分训练集和测试集
cv = cvpartition(Y,'Holdout',0.3);
Xtrain = X(training(cv),:);
Ytrain = Y(training(cv),:);
Xtest = X(test(cv),:);
Ytest = Y(test(cv),:);
% 训练支持向量机模型
SVMmodel = fitcsvm(Xtrain,Ytrain,'KernelFunction','rbf','Standardize',true);
% 测试模型
Ypred = predict(SVMmodel,Xtest);
% 计算准确率
accuracy = sum(Ypred==Ytest)/numel(Ytest);
以上代码使用了径向基核函数(rbf)训练了一个支持向量机模型,并使用测试集计算了模型的准确率。
阅读全文