import sklearn.model_selection as ms datas=pd.read_csv(r'C:/Users/20397/Desktop/人工智能实训材料/Day3 分类/wisc_bc_data.csv',sep=',') x=datas.iloc[:,2:32] y=datas.iloc[:,1:2] x_train,x_test,y_train,y_test=ms.train_test_split(x,y,test_size=0.2,random_state=42) y_train=y_train.values.ravel() y_test=y_test.values.ravel() #构建和训练模型 import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier import pandas as pd # 构建 knn 模型 knn= KNeighborsClassifier(n_neighbors=43,weights='distance',p=2) #训练KNN模型 knn.fit(x_train,y_train) knn.score(x_train,y_train) # 评估模型效果 from sklearn.metrics import classification_report y_pred=knn.predict(x_test) print(classification_report(y_test,y_pred))讲一下
时间: 2023-12-24 15:29:23 浏览: 79
这段代码主要是构建了一个KNN分类器模型,并且用该模型来对威斯康星州乳腺癌数据集进行分类。具体步骤如下:
1. 读取数据集:使用pandas库中的read_csv函数读取威斯康星州乳腺癌数据集。
2. 分割数据集:使用sklearn库中的train_test_split函数将数据集分为训练集和测试集。
3. 构建模型:使用sklearn库中的KNeighborsClassifier函数构建KNN分类器模型,并指定一些参数。
4. 训练模型:使用fit函数对模型进行训练。
5. 评估模型效果:使用sklearn库中的classification_report函数对模型进行评估,输出模型的分类性能指标,如精确率、召回率、F1值等。
其中,KNN分类器模型的参数包括:
- n_neighbors:指定KNN分类器中的K值,即选择最近的K个邻居进行分类。
- weights:指定KNN分类器中的权重计算方式,包括uniform和distance两种方式。
- p:指定距离计算方式,包括欧式距离(p=2)和曼哈顿距离(p=1)两种方式。
相关问题
帮我看一下这段代码哪里有问题,怎么修改?import pandas as pd import numpy as np pd.set_option('display.max_columns', None)#所有列 pd.set_option('display.max_rows', None)#所有行 data=pd.read_excel('半监督数据.xlsx') datas = pd.DataFrame(data)dataset=datas(labeled_size=0.3,test_size=0.1,stratified=False,shuffle=True,random_state=0, default_transforms=True)
这段代码存在几个问题:
1. 缺少导入 `sklearn.model_selection.train_test_split` 的语句,这个函数用于划分数据集。
2. `datas(labeled_size=0.3,test_size=0.1,stratified=False,shuffle=True,random_state=0,default_transforms=True)` 中的 `labeled_size` 和 `test_size` 参数应该使用 `train_size` 和 `test_size` 代替。
3. `datas` 是一个 DataFrame 对象,应该使用 `train_test_split` 函数对其进行划分,而不是将其作为参数传递给 `dataset`。
修改后的代码如下:
```
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
pd.set_option('display.max_columns', None) # 所有列
pd.set_option('display.max_rows', None) # 所有行
data = pd.read_excel('半监督数据.xlsx')
X = data.drop(columns=['label']) # 特征矩阵
y = data['label'] # 标签列
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=None, shuffle=True, random_state=0)
# 划分带标签数据集
labeled_size = 0.3
n_labeled = int(labeled_size * len(X_train))
indices = np.arange(len(X_train))
unlabeled_indices = np.delete(indices, y_train.index[:n_labeled])
X_unlabeled = X_train.iloc[unlabeled_indices]
y_unlabeled = y_train.iloc[unlabeled_indices]
X_labeled = X_train.iloc[y_train.index[:n_labeled]]
y_labeled = y_train.iloc[y_train.index[:n_labeled]]
```
这里将数据集划分为带标签数据集和无标签数据集,只对带标签数据集进行训练。如果需要同时使用带标签数据集和无标签数据集进行训练,可以使用半监督学习的算法,例如标签传播算法和自训练算法。
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error b_datas = datasets.load_boston() 为什么报错?
我没有看到具体的错误信息,但是根据你提供的代码,可能是因为缺少了一些必要的代码行。在加载完数据集之后,你需要将数据集划分为训练集和测试集,然后再拟合模型并进行预测。你可以尝试在代码中添加以下行:
```
X_train, X_test, y_train, y_test = train_test_split(b_datas.data, b_datas.target, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error: ", mse)
```
这些代码可以将数据集划分为训练集和测试集,使用线性回归模型拟合训练数据并进行预测,最后计算均方误差并输出。
阅读全文